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Abstract. Given a �eld extension F/C , the “Lambda closure” ΛFC of C in F is a subextension of F/C that is minimal with

respect to inclusion such that F/ΛFC is separable. The existence and uniqueness of ΛFC was proved by Deveney and Mordeson

in 1977. We show that it admits a simple description in terms of given generators for C : we expand the language of rings by

the parameterized Lambda functions, and then ΛFC is the sub�eld of F generated over C by additionally closing under these

functions. We then show that, given particular generators of C , ΛFC is the sub�eld of F generated iteratively by the images of

the generators under Lambda functions taken with respect to p-independent tuples also drawn from those generators.

We apply these results to study the “local structure” of existentially de�nable sets in �elds equipped with a henselian topol-

ogy. Let X(K) be an existentially de�nable set in the theory of a �eld K equipped with a henselian topology � . We show that

there is a de�nable injection into X(K) from a Zariski-open subset U ◦
1 of a set with nonempty � -interior, and that each element

of U ◦
1 is interalgebraic (over parameters) with its image in X(K). This can be seen as a kind of very weak local quanti�er elim-

ination, and it shows that existentially de�nable sets are (at least generically and locally) de�nably pararameterized by “big”

sets.

As a second application, we extend the theory of Separably Tame valued �elds, developed by Kuhlmann and Pal, to include

the case of in�nite degree of imperfection, and to allow expansions of the residue �eld and value group structures. We prove

an embedding theorem which allows us to deduce the usual kinds of resplendent Ax–Kochen/Ershov principles.

1. Introduction

We study the “Lambda closure” ΛFC of a given �eld extension F/C : this is the smallest sub�eld of F , containing C ,

such that F/ΛFC is separable. Though its existence and uniqueness were established in a 1977 paper of Deveney and

Mordeson ([DM77]), it remains—in the view of this author—less well-known than it should be. In principle, ΛFC is

obtained by recursively closing C under the so-called “parameterized Lambda functions” (see De�nition 2.5), relative

to every subset of C that is p-independent in F , using the terminology of p-independence developed by Mac Lane,

and others, nearly a century ago. We reduce the complexity of this process by showing that it su�ces to iteratively

adjoin the image of one set of generators under the Lambda functions relative to (the �nite subsets of) one maximal

p-independent subset. This modest e�ciency yields a clean description of ΛFC in terms of a given generating set of C .

For example, if F/C is already separable and c is a well-ordered p-basis of C , we develop from any well-ordered subset a
of F a well-ordered set �F/ca (see De�nition 2.26), called the local Lambda closure of a, such that C(�F/ca) = ΛFC(a), and

yet nevertheless each element of �F/ca is existentially de�nable in F over c ∪ a in the �rst-order language Lring of rings.

Pursuing this point of view, we employ a language L� consisting of function symbols �m(x, y), for m ∈ N. This

language is not new: it and its variants have been used before to study separably closed �elds and separably closed valued

�elds (see Remark 2.40), although we give a presentation in De�nition 2.37 that is independent of characteristic. Any

�eld admits a natural L�-structure via interpreting the new symbols �m(x, y) by the parameterized Lambda functions.

It is clear that ΛFC is the (Lring ∪L�)-substructure of F generated by C , but we show that it is the sub�eld generated by

the image of C under L�-terms, thus separating the function symbols of Lring from those of L� , and so expressing each

Lring ∪ L�-term as the composition of an Lring-term with an L�-term. The following theorem, proved in section 2, is a

summary:

Theorem 1.1. Let F/C be separable, let c be a well-ordered p-basis of C , and let a be a well-ordered subset of F . There exists
a subset �F/ca of F such that
(i) ΛFC(a) = C(�F/ca),
(ii) �F/ca is a collection of closed L�-terms in the elements of c ∪ a,

If moreover a, b ⊆ F are �nite and F = C(a, b), then
(iii) there is a �nite subset �F/b/ca ⊆ �F/ca such that ΛFC(a) = C(�F/b/ca).

As a �rst application, we use the local Lambda closure to describe Diophantine subsets of a �eld K equipped with

a henselian topology � , as de�ned in [PZ78]: these are the topologies that are “locally equivalent”, as de�ned in that

paper (see [PZ78, §1]), to a topology induced by a nontrivial henselian valuation. This includes the case that � is itself

induced by a nontrivial henselian valuation on K . Henselianity, at this topological level, is equivalent to the Implicit

Function Theorem for polynomials, as elucidated in [PZ78, (7.4) Theorem]. Adapting the terminology of [Lan58, 7,

Chapter II, Section 3], the locus of a tuple
1 a ∈ Km

over a sub�eld C ⊆ K , denoted locus(a/C), is the smallest Zariski

closed subvariety of Am
C , de�ned over C , of which a is a rational point, see De�nition 3.3. If b ∈ Kn

is another tuple
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then, just as in Theorem 1.1 (iii), there is a �nite subset �K/b/ca of �K/ca such that C(�K/b/ca, b)/C(�K/b/ca) is separable.

For � = |�K/b/ca|, there is a coordinate projection �K/b/c ∶ A�
C → Am

C that maps �K/b/ca ↦ a. Using these tools, in

section 3 we prove the following theorem and its corollary.

Theorem 1.2. Let K/C be a separable �eld extension, let � be a henselian topology on K , let c be a well-ordered p-basis of
C , let X ⊆ Km be an existentially Lring(C)-de�nable set, and let a ∈ X . There exists a � -neighbourhood U of �K/b/ca such
that X contains the image of

locus(�K/b/ca/C)(K) ∩ U
under the coordinate projection �K/b/c .

This theorem simpli�es problems around existential de�nability in �elds equipped with henselian topologies.

Corollary 1.3. Let K be a �eld with a henselian topology � , and let B ⊆ K be a subset. Then the model-theoretic existential
Lring-algebraic closure of B in K is a subset of the the relative algebraic closure of ΛKF(B) in K .

The theory STVF of separably tame valued �elds was introduced, along with that of tame valued �elds, by Kuhlmann

in [Kuh16], and further developed by Kuhlmann and Pal in [KP16]. Separably tame—and especially tame—valued �elds

feature widely in contemporary research on the model theory of valued �elds. For example they are crucial to the

arguments and results in [AF16, AJ18, AJ22, AJ24, AK16, BK17, Daa24, Jah24, JK23, JS20, JS25, Kar23, Kar24, KR23, Sin22],

to name just a few. In [KP16], using an expansion called LQ of a standard language of valued �elds Lval, Kuhlmann

and Pal prove that a range of “Ax–Kochen/Ershov principles” hold — generalizing the original principles for henselian

valued �elds of equal characteristic zero ([AK65, Erš65]):

Theorem 1.4 ([KP16, Theorem 1.2]). The class Mod(STVFp,i) of all separably tame valued �elds of �xed characteristic
p > 0 and �xed �nite imperfection degree i ∈ N is an AKE∃-class in LQ , an AKE≺-class in LQ , and an AKE≡-class in Lval.

For precise de�nitions of these theories and properties, see section 4. We reformulate and prove a version (Theo-

rem 4.19) of the usual Embedding Lemma for separably tame valued �elds, in order that it apply to all separably tame

valued �elds of equal characteristic, regardless of imperfection degree, and for it to yield separability of the resultant

embedding. Combining Lval with the language L� , we obtain Lval,� . In this language, and using our new Embed-

ding Lemma, we prove Theorem 4.21, which gives various transfer statements for fragments of theories, between two

models, over a common defectless substructure. We then deduce Theorem 4.23 which gives a range of “separable Ax–

Kochen/Ershov principles” (sAKE, see De�nition 4.22). Throughout, we work with the Lval,�-theory STVFeq of equal

characteristic separably tame valued �elds, with emphasis on equal positive characteristic, since we say nothing new in

mixed characteristic or in equal characteristic zero. Nevertheless, our results are uniform in the (equal) characteristic.

Our main theorems in this direction are Theorem 4.21 and 4.23. Of the latter the following is a special case:

Theorem 1.5. Let � ∈ {≡, ≡∃, ⪯, ⪯∃}. The class of all separably tame valued �elds of equal characteristic is an sAKE

�

-class
for the triple of languages (Lval,� ,Lring,Loag), that is:

Let (K , v), (L, w) ⊧ STVFeq, and additionally suppose (K , v) ⊆ (L, w) in case

�

is either ⪯ or ⪯∃. Then
∙ (K, v) � (L, w) in Lval,�

if and only if
∙ Kv � Lw in Lring,
∙ vK � wL in the language Loag of ordered abelian groups, and
∙ K and L have the same elementary imperfection degree (as de�ned in 2.3).

Arguably the result �nds its most familiar form by taking

�

to be ≡: For all (K , v), (L, w) ⊧ STVFeq we have (K , v) ≡ (L, w)
in Lval,� if and only if Kv ≡ Lw in Lring, vK ≡ wL in Loag, and K and L have the same elementary imperfection degree.
We prove this theorem, and the following corollary, in section 4.

Corollary 1.6. Let (K , v) be a separably tame valued �eld of equal characteristic. Then
∙ the theory of (K , v) in the language Lval of valued �elds is decidable

if and only if
∙ the theory of Kv in the language Lring of rings is decidable and
∙ the theory of vK in the language Loag of ordered abelian groups is decidable.

These results on separably tame valued �elds, especially Theorems 4.21 and 4.23, extend those of [KP16] in two ways:

�rstly, we allow in�nite imperfection degree, and secondly, our results are resplendent, though resplendency in �nite

imperfection degree can be read from the arguments presented in [KP16].

2. Lambda closure

The topic of separability and inseparability pertains mainly to the world of �elds of positive characteristic, since all

�eld extensions in characteristic zero are separable, according to the de�nition that we recall below. Nevertheless, it is

possible for us to give a treatment that includes the case of characteristic zero, by making the convention that throughout
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this section p will denote the characteristic exponent of the integral domain in question, i.e. p is the characteristic if this

is positive, and p is 1 otherwise. Throughout F denotes the prime �eld of characteristic exponent p, i.e. Fp for p > 1,
and Q for p = 1. For n < !, and a subset A of a �eld F , we write A(n) ∶= {an ∣ a ∈ A}, and for a choice F alg of algebraic

closure of F we write A(p−n) ∶= {a ∈ F alg ∣ apn ∈ A}. The perfect hull of A, denoted Aperf , is the directed union of the

sets A(p−n), for n < !. Thus in characteristic zero, we always have A(p−n) = A and Aperf = A.

A �eld extension F/C of characteristic exponent p is separably generated if there is a transcendence basis a ⊆ F of

F/C such that F is separably algebraic over C(a), such a basis is called a separating transcendence basis of the extension.

We say that F/C is separable if F/C is linearly disjoint from C(p−1)/C , and we say that F/C is separated if additionally

F = F (p)C . An embedding ' ∶ C → F is separable if F/'(C) is separable. A �eld F is perfect if every extension of it is

separable, and this holds if and only if F = F (p), which in turn is equivalent to F = Fperf .
The following theorem, originally due to Mac Lane, is the �rst characterization of separable �eld extensions.

Lemma 2.1 (see [Lan87, Chapter VIII, Proposition 4.1]). For a �eld extension F/C , the following are equivalent.
(i) F/C is separable.
(ii) F/C and Cperf/C are linearly disjoint.
(iii) Every �nitely generated subextension E/C of F/C is separably generated.
(iv) Every �nite subset A of E may be re�ned to a separating transcendence basis of C(A)/C .

A subset A of F is p-independent over C if a ∉ F (p)C(A ⧵ {a}), for all a ∈ A. It is p-spanning over C if F = F (p)C(A),
and it is a p-basis over C if it is both p-independent and p-spanning over C . Mostly we will be interested in the absolute

versions of these notions, i.e. when C is a prime �eld F, in which case we simply say p-independent, p-spanning, and

p-basis. We see immediately that p-independence is of �nite character: A ⊆ F is p-independent in F over C if and only if

every �nite subset of A is p-independent in F over C , since F (p)C(A) is the union of sub�elds F (p)C(a) for �nite subsets

a ⊆ A. Typically, though not always, we will work with well-ordered subsets of �elds, rather than (unordered) subsets,

though this is not of any real signi�cance until we de�ne the “splitting pairs” map in 2.2. We write (F /C)[p] (respectively

(F /C)[[p]]) for the set of well-ordered subsets of F that are p-independent (resp. p-bases) in F over C , and we write F[p]
(resp. F[[p]]) in the absolute case when C = F. The relation of p-independence in F over C satis�es the exchange property:

that is a ∈ F (p)C(A, b)⧵F (p)C(A) implies b ∈ F (p)C(A, a). It de�nes a pre-geometry on subsets of F , and any two p-bases (in

F over C) have the same cardinality: thus we may de�ne the (relative) imperfection degree of F over C , denoted imp(F /C),
to be the cardinality of a p-basis of F over C . The imperfection degree of F , denoted imp(F ) ∶= imp(F /F), is the cardinality

of a p-basis of F in the absolute case. If imp(F /C) is �nite then [F ∶ F (p)C] = pimp(F /C)
, and [F ∶ F (p)C] = imp(F /C)

otherwise.

The following lemma gives a second characterization of separable �eld extensions, this time in terms of p-independence,

and is also due to Mac Lane.

Lemma 2.2 (cf [ML39, Theorems 7 and 10]). For a �eld extension F/C , the following are equivalent.
(i) F/C is separable.
(ii) Every p-independent subset of C is p-independent in F , equivalently C[p] ⊆ F[p].
(iii) Every �nite p-independent subset of C is p-independent in F .
(iv) Every p-basis of C is p-independent in F , equivalently C[[p]] ⊆ F[p].
(v) Some p-basis of C is p-independent in F , equivalently C[[p]] ∩ F[p] ≠ ∅.

The implication (iii)⇒(ii) follows from the �nite character of p-independence. Trivially, the previous lemma has the

following analogue for separated extensions.

Lemma 2.3. For a �eld extension F/C , the following are equivalent.
(i) F/C is separated.
(ii) Every p-basis of C is a p-basis of F , equivalently C[[p]] ⊆ F[[p]].
(iii) Some p-basis of C is a p-basis of F , equivalently C[[p]] ∩ F[[p]] ≠ ∅.

Given a cardinal i, the set of �nitely supported multi-indices (indexed by i, with each index < p) is

p[i] = {I = (i� )�<i ∈ {0, … , p − 1}i ∣ supp(I ) is �nite},
where supp(I ) ∶= {� < i ∣ i� ≠ 0}. Given a subset b = (b� )�<i of a ring, indexed by i, a p-monomial in b is the product

bI ∶= ∏�<i b
i�� , for some I = (i� )�<i ∈ p[i]. We observe that every well-ordered set b has a unique order-preserving

indexing by |b|.

Lemma 2.4. For a well-ordered subset b ⊆ F , we have the following:
(i) b ∈ (F /C)[p] if and only if {bI ∣ I ∈ p[|b|]} is an F (p)C-linear base for F (p)C(b), and
(ii) b ∈ (F /C)[[p]] if and only if {bI ∣ I ∈ p[|b|]} is an F (p)C-linear base for F .

In particular, if b ∈ F[[p]], then F = ⨁I ∈p[|b|] b
I F (p) is a direct sum of F (p)-vector spaces.
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Proof. If b is p-independent in F over C , then each b� generates a purely inseparable �eld extension of degree p over

F (p)(C)(b ⧵ {b�}). The rest follows from the usual Tower Lemma that describes linear bases of iterated �eld extensions.

�

This lemma enables the following de�nition, which is central to everything that follows.

De�nition 2.5 (Lambda functions). For b ∈ F[p] and for a ∈ F (p)(b), there is a unique family (�bI (a))I ∈p[|b|] of elements

of F such that

a = ∑
I ∈p[|b|]

bI �bI (a)
p .

Thus for each I ∈ p[|b|] there is a function

�bI ∶ F
(p)(b) → F

a ↦ �bI (a).

We write �b for the function a ↦ (�bI (a))I ∈p[|b|] from F (p)(b) to the set of subsets of F indexed by p[|b|]. On the other

hand, the parameterized lambda functions are the partial functions �I ∶ F × F[p] → F , for I ∈ p[i], that are de�ned by

�I (a, b) ∶= �bI (a) when |b| = i and a ∈ F (p)(b), and are unde�ned otherwise. Finally, for any set A ⊆ F , we will write

�b(A) to mean the union ⋃I ∈p[|b|] �
b
I (A ∩ F

(p)(b)), where each �bI (A ∩ F
(p)(b)) is simply the set {�bI (a) ∣ a ∈ A ∩ F

(p)(b)}.

Remark 2.6. The �nite character of p-independence appears in a second guise: the set �b(A) is the union of sets �b0 (A)
for �nite subsets b0 ⊆ b.

The next proposition gives a third and �nal characterization of separable �eld extensions. It is certainly well known,

dating back to at least the work of Mac Lane, however we give a proof for the convenience of the reader.

Proposition 2.7. For a �eld extension F/C , the following are equivalent.
(i) F/C is separable.
(ii) F (p)(b) ∩ C = C(p)(b) for each b ∈ F[p] with b ⊆ C .
(iii) F (p)(b) ∩ C = C(p)(b) for each �nite b ∈ F[p] with b ⊆ C .
(iv) �b(F (p)(b) ∩ C) ⊆ C for each b ∈ F[p] with b ⊆ C .
(v) �b(F (p)(b) ∩ C) ⊆ C for each �nite b ∈ F[p] with b ⊆ C .

Proof. For n ∈ N, we denote

(i)n for each n-tuple b from C , if b ∈ C[p] then b ∈ F[p],
and

(iii)n F (p)(b) ∩ C = C(p)(b) for each n-tuple b ∈ F[p] with b ⊆ C .

Note that (i)0 is true unconditionally, and (i) is equivalent to ⋀n∈N(i)n by Lemma 2.2 (i)⇔(iii). The equivalences

(ii)⇔(iii) and (iv)⇔(v) also follow from the �nite character of p-independence (see Remark 2.6). Clearly (iii) is equiv-

alent to ⋀n∈N(iii)n . We will show (i)n+1⇒(iii)n . Let b ∈ F[p] be an n-tuple with b ⊆ C . Clearly F (p)(b) ∩ C ⊇ C (p)(b).
For each c ∈ (F (p)(b) ∩ C) ⧵ C(p)(b), we have bac ∈ C[p] ⧵ F[p] (where bac is the concatenation of b and c), which

contracts (i)n+1. Thus F (p)(b) ∩ C = C(p)(b), i.e. (iii)n holds. The implication (i)⇒(iii) follows. Conversely, we sup-

pose as an inductive hypothesis that ⋀i<n(iii)i⇒ ⋀i<n+1(i)i+1 — note that the base case n = 0 is trivial. We will show

⋀i≤n(iii)i⇒ ⋀i≤n+1(i)i+1, so we suppose (iii)i for all i ≤ n. Let b ⊆ C be an n-tuple, let c ∈ C , and suppose that

bac ∈ C[p]. Then in particular b ∈ C[p], so b ∈ F[p] by (i)n . Then by (iii)n we have F (p)(b) ∩ C = C(p)(b). Thus c ∉ F (p)(b),
so bac ∈ F[p], which proves (i)n+1. Together this has proved (iii)⇒(i). To see (iii)⇔(v), we let b be an n-tuple from C
with b ∈ F[p]. As before, it is clear that F (p)(b) ∩ C ⊇ C(p)(b). Then F (p)(b) ∩ C ⊆ C(p)(b) if and only if �bI (a) ∈ C for all

I ∈ p[|b|] and all a ∈ F (p)(b) ∩ C , by Lemma 2.4. This shows (iii)⇔(v). �

Observe that Proposition 2.7 (iv) expresses that C is “Λ-closed” in F , i.e. closed under all the lambda functions with

respect to well-ordered subsets of C that are p-independent in F . By (v), it is equivalent that C be closed under those

lambda functions with respect to �nite subsets of C that are p-independent in F .

We are familiar with the elementary fact that every algebraic �eld extension F/C decomposes uniquely into a sep-

arably algebraic extension E/C and a purely inseparable extension F/E. The reverse is not true: if F/C is not normal

then there is not necessarily subextension E/C that is purely inseparable, such that F/E is separable. However, as the

following theorem shows, it is still true, even for arbitrary �eld extensions F/C , that there is a minimal subextension

E/C such that F/E is separable.

Theorem 2.8 (cf [DM77, Theorem 1.1]). For every �eld extension F/C there is a miminum element of

Sep(F /C) ∶= {D ∣ D ⊆ F is a sub�eld, with F/D separable and C ⊆ F}
with respect to inclusion.
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De�nition 2.9. For any �eld extension F/C , we denote by ΛFC the minimum element of Sep(F /C) and we call it the

Λ-closure of C in F .

Remark 2.10. We note that ΛF is a closure operation on the set of sub�elds of F , since C ⊆ ΛFC , ΛFC = ΛFΛFC , and

C1 ⊆ C2 ⟹ ΛFC1 ⊆ ΛFC2.

For a �eld extension F/C , we denote by Λ1FC the sub�eld of F generated over C by the elements �bI (a), for every �nite

b ∈ F[p] with b ⊆ C , a ∈ F (p)(b) ∩ C , and I ∈ p[|b|]. By writing Λ0FC ∶= C and Λn+1F C ∶= Λ1FΛ
n
FC we have recursively

constructed an increasing chain of sub�elds of F containing C .

Example 2.11. For sub�elds C of a perfect �eld F , of characteristic exponent p, Λ1F simply amounts to adjoining p-th

roots: Λ1FC = C(p−1). In particular, if C is also perfect and t ∈ F , then Λ1FC(t) = C(t
p−1 ).

Lemma 2.12. ΛFC is the directed union ⋃n<! ΛnFC .

Proof. For convenience, let us denote L ∶= ⋃n<! ΛnFC . By the de�nition of Λ1FC and the characterization of separability

given in Proposition 2.7 (v), it is clear that Λ1FC ⊆ ΛFC . A simple induction yields ΛnFC ⊆ ΛFC for each n < !, and so

L ⊆ ΛFC . It remains to show that F/L is separable, to which end we will verify the criterion of Proposition 2.7 (v). Let

b ∈ F[p] be �nite, with b ⊆ L, and let a ∈ F (p)(b) ∩ L. Let n < ! be such that b ⊆ ΛnFC and a ∈ ΛnFC . Then

�bI (a) ∈ Λ
1
FΛ

n
FC = Λn+1F C ⊆ L,

for each I ∈ p[|b|]. This veri�es Proposition 2.7 (v) for the extension F/L, which shows that F/L is separable, and thus

ΛFC ⊆ L, whence ΛFC = L. �

Example 2.13. For sub�elds C of a perfect �eld F , of characteristic exponent p, ΛF simply amounts to taking the perfect

hull: ΛFC = Cperf . In this case, C = ΛFC if and only if C is perfect.

Remark 2.14. Let F be any �eld.

(i) If (Ci)i∈I is a directed system of sub�elds of F , then ΛF ⋃i∈I Ci = ⋃i∈I ΛFCi , which implies that this closure

operation is �nitary.

(ii) Let C ⊆ E ⊆ F be a tower of sub�elds of F with F/E separable. Then ΛKC = ΛFC . For example, if F ∗ ⪰ F is an

elementary extension, then ΛF ∗C = ΛFC .

2.1. Some lambda algebra. For the rest of this section we suppose that F/C is a separable �eld extension of charac-

teristic exponent p. For a subset A ⊆ F and a subring R ⊆ F , we denote by R[A] the subring of F generated by R ∪ A.

Similarly, for a sub�eld E ⊆ F , E(A) denotes the sub�eld of F generated by E ∪ A. Perhaps it is helpful to reinforce that

in the following lemma, we write a1a2 for the usual multiplicative product of a1 and a2 in the �eld F .

Lemma 2.15. Let b ∈ F[p] and let a, a1, a2 ∈ F (p)(b). Then

(i) a ∈ F[�b(a)](p)[b],
(ii) �b is an indexed family of additive homomorphisms, and
(iii) �b(a1a2) ⊆ F[b, �b(a1), �b(a2)].

Proof. The �rst claim (which is a kind of “warm up”) follows trivially from De�nition 2.5. For the second claim: for each

I ∈ p[|b|], �bI is the composition of a coordinate function with the inverse of the Frobenius map, which are both additive

homomorphisms. For the �nal claim, we notice the following:

a1a2 = ( ∑
I1∈p[|b|]

bI1�bI1 (a1)
p)( ∑

I2∈p[|b|]
bI2�bI2 (a2)

p)

= ∑
I1,I2∈p[|b|]

bI1+I2�bI1 (a1)
p�bI2 (a2)

p

= ∑
J2∈p[|b|]

bJ2(∑
J1
bJ1�bI1 (a1)�

b
I2 (a2))

p ,

where the second sum in the last line ranges over �nitely supported multi-indices J1, indexed by |b| and with each index

a natural number, such that I1 + I2 = J1p + J2 and J2 ∈ p[|b|], using coordinatewise addition of multi-indices. Thus

�bI (a1a2) = ∑J1 b
J1�bI1 (a1)�

b
I2 (a2). �

Lemma 2.16. Let b ∈ F[p] and let a ⊆ F (p)(b). Then

(i) �b(F[a]) ⊆ F[b, �b(a)] and
(ii) �b(F(a)) ⊆ F(b, �b(a)).

Proof. (i) follows straight from Lemma 2.15 (ii,iii). For (ii), by (i) we have F[a] ⊆ R(p)[b], where R = F[b, �b(a)]. By

passing to the �elds of fractions we have F(a) ⊆ Frac(R)(p)(b) = F(b, �b(a))(p)(b), and moreover {bI ∣ I ∈ p[|b|]} is an

F(b, �b(a))(p)-linear basis of F(b, �b(a))(p)(b) (cf Lemma 2.4), which proves (ii). �
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Remark 2.17. Lemma 2.16 (ii) shows that each �bI (1/a) is a rational function in b ∪ �b(a), for any a ∈ F (p)(b).

Lemma 2.18 ("Lambda calculus I"). Let a, b ∈ F[p] and let d ∈ F (p)(a) ∩ F (p)(b) be in the p-span of both a, b in F .

(i) If b ⊆ F (p)(a), then �a(d) ⊆ F[a, �a(b), �b(d)].
(ii) If F (p)(a) = F (p)(b), then F(�a(b)) = F(�b(a)).
(iii) If F (p)(a) = F (p)(b), then �a(d) ⊆ F(a, �b(a), �b(d)).

Proof. For (i) we calculate

d = ∑
I1∈p[|b|]

bI1�bI1 (d)
p

= ∑
I1∈p[|b|]

( ∑
I2∈p[|a|]

aI2�aI2 (b
I1 )p)�bI1 (d)

p

= ∑
I2∈p[|a|]

aI2( ∑
I1∈p[|b|]

�aI2 (b
I1 )�bI1 (d))

p .

Therefore �aI2 (d) = ∑I1∈p[|b|] �
a
I2 (b

I1 )�bI1 (d), for each I2 ∈ p[|a|]. Then (i) follows from Lemma 2.16 (i).
For (ii): by the hypothesis, a and b have the same cardinality, so we may index them both by a cardinal i = |a| = |b|:

we write a = (a� )�<i and b = (b� )�<i. Moreover, both A ∶= {aI ∣ I ∈ p[i]} and B ∶= {bI ∣ I ∈ p[i]} are E ∶= F (p)(C)-linear

bases of E(a) = E(b). Let M be the matrix representing the identity map on E(a) = E(b) written with respect to the bases

A and B. Writing M = (mI ,J )I ,J ∈p[i] , we have mI ,J = �bI (a
J )p , where aJ = ∑I ∈p[i] b

I �bI (a
J )p . Writing the inverse of M as

M−1 = (m̂J ,I )J ,I , we have m̂J ,I = �aJ (b
I )p , where bI = ∑J ∈p[i] a

J �aJ (b
I )p . Finally, the coe�cients of M−1

are contained in

the �eld generated by the coe�cients of M .

For (iii), by combining (i) and (ii), we have

�aI (d) ∈ F[a, �a(b), �b(d)] ⊆ F(a, �a(b), �b(d)) = F(a, �b(a), �b(d)),

for each I ∈ p[|a|]. �

In the following, (A) denotes the powerset of a set A.

Lemma 2.19. Let d ⊆ F and let a, b ∈ F[p] ∩(F(d)) be maximal (with respect to inclusion) among subsets of F(d) that are
p-independent in F . Then (i) F(a, �a(d)) = F(b, �b(d)) and (ii) Λ1FF(d) = F(a, �a(d)).

Proof. The hypothesis implies that d ⊆ F (p)(a) = F (p)(b), so the hypotheses of Lemma 2.18 (i,ii,iii) are satis�ed. First, we

have �a(d) ⊆ F(a, �b(a), �b(d)), by Lemma 2.18 (iii). Second, more trivially by Lemma 2.15 (i), we have a ⊆ F[�b(a)](p)[b],
and so certainly a ⊆ F[b, �b(a)]. Third, by Lemma 2.16 (i), we have �b(a) ⊆ F(b, �b(d)). Combining these three observa-

tions, we have

F(a, �a(d)) ⊆ F(a, �b(a), �b(d)) ⊆ F(b, �b(a), �b(d)) ⊆ F(b, �b(d)).
By symmetry of our assumptions on a and b, we have the equality F(a, �a(d)) = F(b, �b(d)) which proves (i).

For the second claim, by de�nition,Λ1FF(d) is the �eld generated overF(d) by the sets �b′ (d′), for all b′ ∈ F[p]∩(F(d))
and all d′ ∈ F (p)(b′) ∩ F(d). By hypothesis a ∈ F[p] ∩ (F(d)), therefore already we have Λ1FF(d) ⊇ F(a, �a(d)). On the

other hand, since b is a maximal subset of F(d) that is p-independent in F , and is otherwise arbitrary, it su�ces to

show that F(b, �b(d′)) ⊆ F(a, �a(d)). By Lemma 2.16 (ii), �b(d′) ⊆ F(b, �b(d)); and combining this with (i) we have

F(b, �b(d′)) ⊆ F(b, �b(d) ⊆ F(a, �a(d)), as required. �

We also give the following version of Lemma 2.18 for relative p-independence. As before, we denote the concatenation

of well-ordered sets a and b by aab. We allow an exception to this convention in superscripts, where for want of space

we denote concatenation by juxtaposition ab. In such circumstances there is no risk of confusion with multiplication.

The (unordered) set underlying aab is just the union a ∪ b.

Lemma 2.20 ("Lambda calculus II"). Let a, b ∈ (F /C)[p], let c ∈ C[[p]], and let d ∈ F (p)C(a) ∩ F (p)C(b) be in the p-span of
both a, b in F over C .
(i) If b ⊆ F (p)C(a), then �ca(d) ⊆ C[�cb(d), �ca(b), a].
(ii) If F (p)C(a) = F (p)C(b), then C(�ca(b)) = C(�cb(a)).
(iii) If F (p)C(a) = F (p)C(b), then �ca(d) ⊆ C(�cb(a), �cb(d), a).

Proof. The general hypothesis implies that both caa and cab are p-independent in F , and that d ∈ F (p)(a, c) ∩ F (p)(b, c).
For (i): the hypothesis implies that cab ⊆ F (p)(a, c). By Lemma 2.18 (i) we have

�ca(d) ⊆ F[�cb(d), �ca(c ∪ b), a, c] ⊆ C[�cb(d), �ca(b), a].
For (ii): the hypothesis implies that F (p)(a, c) = F (p)(b, c). By Lemma 2.18 (ii) we have F(�ca(c ∪b)) = F(�cb(c ∪a)), which

yields C(�ca(b)) = C(�cb(a)). For (iii): the hypothesis again implies that F (p)(a, c) = F (p)(b, c). By (i) and (ii), as well as

by Lemma 2.18 (iii), we have �ca(d) ⊆ F(�cb(a), �cb(c), �cb(d), a, c) ⊆ C(�cb(a), �cb(d), a). �
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...and we give the following version of Lemma 2.19 for relative p-independence.

Lemma 2.21. Let d ⊆ F , let a, b ∈ (F /C)[p] ∩ (C(d)) be maximal (with respect to inclusion) among subsets of C(d) that
are p-independent in F over C , and let c ∈ C[[p]]. Then (i) C(a, �ca(d)) = C(b, �cb(d)) and (ii) Λ1FC(d) = C(a, �

ca(d)).

Proof. For (i) of course we apply Lemma 2.19 (i) to caa and cab: we have F(a, c, �ca(d)) = F(c, b, �cb(d)), from which

we deduce C(a, �ca(d)) = C(b, �cb(d)). For (ii), the concatenation caa is indeed p-independent in F , and is maximal

among such subsets of C(d), with respect to inclusion. Thus, by Lemma 2.19 (ii), we have Λ1FC(d) = F(a, c, �ca(C ∪ d)) =
C(a, �ca(d)), since F/C is separable. �

2.2. The local lambda closure. Given a �eld extension F/C and a well-ordered subset a of F , we denote by IF/C (a) the

well-ordered maximal subset of a which is p-independent in F over C , taken from the left. More precisely, writing the

well-ordering of a as (a� )�<� , we obtain IF/C (a) recursively by adding each element if (and only if) it is p-independent

over C together with what has already been added, and we equip it with the well-order induced from a. Let L(F /C)
denote the set of pairs (a, b), where both a, b are well-ordered subsets of F and a ∈ (F /C)[p]. For the remainder of this

section we suppose that F/C is separable. We de�ne a family of operations LF/c on L(F /C).

De�nition 2.22 (“Splitting pairs”). Let c ∈ C[[p]]. Given (a, b) ∈ L(F /C) we let LF/c (a, b) = (a′, b′), where

(i) a′ is the concatenation aaIF/C(a)(b), and

(ii) b′ is the concatenation ba�ca′ (b), where �ca′ (b) is ordered by the lexicographic order determined by b × p[|ca′ |].

This de�nition is illustrated in Figure 1. Note that indeed a′ ∈ (F /C)[p] and b ∈ F (p)C(a′), otherwise a′ could be

properly extended within b, contradicting maximality. Thus b′ is well-de�ned, and moreover LF/c (a, b) ∈ L(F /C), so

LF/c does de�ne an operation on L(F /C).

a b

a′ = aaIF/C(a)(b) b′ = ba�ca′ (b)

�ca′

IF/C(a)(b)

Figure 1. The “splitting pairs” map (a, b) ↦ LF/c (a, b)

Denote by ⪯1 the partial order on well-ordered subsets of F by writing a ⪯1 a′ if a is an initial segment of a′, and let

⪯ be the partial order on L(F /C) given by (a, b) ⪯ (a′, b′) if and only if both a ⪯1 a′ and b ⪯1 b′. In the following lemma

we continue to write LF/c (a, b) = (a′, b′).

Lemma 2.23. For any (a, b) ∈ L(F /C) we have (a, b) ⪯ LF/c (a, b). Moreover a′ p-spans C(a, b) in F over C , i.e. C(a, b) ⊆
F (p)C(a′), and Λ1FC(a, b) = C(a

′, �ca′ (b)) = C(LF/c (a, b)).

Proof. Inspecting the de�nition of LF/c , it is clear that (a, b) ⪯ (a′, b′) and b ⊆ C(a′, �ca′ (b)). This shows thatC(a′, �ca′ (b)) =
C(a′, b′) = C(LF/c (a, b)). By Lemma 2.21 (ii), Λ1FC(a, b) = C(a

′, �ca′ (b)). �

De�nition 2.24. For a well-ordered subset a of F , we let (LnF/c (a))n<! be the sequence given recursively by L0F/c (a) =
(∅, a) and Ln+1F/c (a) = LF/c (L

n
F/c (a)). We also write LnF/c (a) = (L

n,I
F /c (a), L

n,S
F /c (a)).

Lemma 2.25. For a well-ordered subset a of F , we have LnF/c (a) ⪯ L
n+1
F/c (a). Moreover Ln+1,IF /c (a) p-spans C(LnF/c (a)) over C

and Λ1FC(L
n
F/c (a)) = C(L

n+1
F/c (a)).

Proof. This follows immediately from Lemma 2.23. �

De�nition 2.26. Let �F/c (a) = (�IF /ca, �
S
F/ca) be the direct limit of this chain of pairs (LnF/c (a))n<! , where LnF/c (a) =

(Ln,IF /c (a), L
n,S
F /c (a)), and write �F/ca = �IF /ca ∪ �

S
F/ca. We call �F/ca the local lambda closure of a, with respect to c.

Observe that �F/c (a) ∈ L(F /C), since L(F /C) is closed under unions of chains with respect to ⪯.

Proposition 2.27. For a well-ordered subset a of F , we have
(i) ΛFC(a) = C(�F/ca),
(ii) �IF /ca is a p-basis of both C(�

I
F /ca) and C(�F/ca),

(iii) C(�F/ca)/C(�IF /ca) is separated, and
(iv) both F/C(�IF /ca) and F/C(�F/ca) are separable.
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Proof. By induction and Lemma 2.23, we have ΛnFC(a) = C(LnF/c (a)), for all n < !. Then (i) follows from Lemma 2.12.

For (ii): �IF /ca is a directed union of sets p-independent in F over C , so it also p-independent in F over C . This implies

already that it is a p-basis of C(�IF /ca) over C . It remains to see that �SF/ca ⊆ C(�
S
F/ca)

(p)(�IF /ca). But �SF/ca is then directed

union of Ln,SF /c (a) and Λ1FC(L
n
F/c (a)) ⊆ C(Ln+1F/c (a)). This shows that �IF /ca is a p-basis of C(�F/ca) over C . Together with

Lemma 2.2, this also proves (iii) and (iv). �

Lemma 2.28. For a well-ordered subset a of F , and a �nite subset b ⊆ F , there exists n1 ∈ N such that b is separable over
C(Ln1F/c (a)). If a is also �nite, then there is n2 ∈ N such that b is separable over C(Ln2F/c (a)), where L

n2
F/c (a) is constructed with

respect to any well-ordering on a.

Proof. First note that there is m ∈ N such that trdeg(b/C(LmF/c (a))) = trdeg(b/C(�F/ca)). Let b1 ⊆ b be a separating

transcendence basis of b over C(�F/c (a)). Now choose n1 ≥ m such that [C(Ln1F/c (a), b) ∶ C(L
n1
F/c (a), b1)] = [C(�F/ca, b) ∶

C(�F/ca, b1)]. It follows that C(Ln1F/c (a), b) is separably algebraic over C(Ln1F/c (a), b1). We let n2 be the maximum value of

n1, taken across the �nitely many di�erent well-orderings of a. �

De�nition 2.29. Let a, b be two �nite subsets of F . By the previous lemma, we may choose n ∈ N minimal such that b
is separable over C(LnF/c (a)), taken with respect to any well-ordering of a. Denote �F/b/ca ∶= L

n,I
F /c (a) ∪ L

n,S
F /c (a).

Remark 2.30. The meaning of Lemma 2.28 is: when a, b are both �nite subsets of F , say (a, b) ∈ Fm+n , there is a bound on

the depth of the recursive process required in the construction of the minimal extension C(�F/b/ca) of C(a) over which b
is separable, when this processes is e�ected with respect to any well-ordering of a, and with respect to a �xed c ∈ C[[p]].
Moreover, the resulting well-ordered set �F/b/ca is a �nite tuple. We denote � ∶= |�F/b/ca| ∈ N. Then a is the image of

�F/b/ca under a coordinate projection �F/b/c ∶ A�
C → Am

C . In particular, this applies when F/C(a) is �nitely generated.

Remark 2.31. Let F be any �eld. For any sub�eld C ⊆ F we have |ΛFC| = |C|. To see this, we �rst note that if C is �nite

then C is perfect, so already ΛFC = C . Now, let a be a well-ordered generating set for C . Then �F/∅a is a countable direct

limit of tuples LnF/∅(a), and we see that there is a �nite-to-one map from �a′ (b) to b, using the notation of De�nition 2.22.

Thus |LnF/∅(a)| ≤ ℵ0 ⋅ |a| ≤ |C|. Arguing inductively, we have |�F/∅c| ≤ |C|, and thus |ΛFC| = |C|. This should be compared

with [Ans19, Lemma 8] in which it was shown that |ΛFC| ≤ ℵ0 for |C| ≤ ℵ0.

2.3. The lambda language. The elementary imperfection degree (or Ershov degree/invariant) of a �eld extension F/C is

Imp(F /C) = imp(F /C) if imp(F ) is �nite; or it is symbolically in�nite, i.e. Imp(F /C) = ∞, if imp(F ) is in�nite. As with

the usual imperfection degree, we write Imp(F ) ∶= Imp(F /F) for the absolute case. We are only ever going to consider

Imp(F /C) when F/C is separable, in which case imp(F ) = imp(F /C) + imp(C).
There are several common languages used to study imperfect �elds, usually construed as expansions of Lring. When

dealing with �elds of �nite (or, at least, bounded) imperfection degree i ∈ N, it may su�ce �rst to expand the language

by constants for a choice of p-basis, obtaining Lb = Lring ∪ {b1, … , bi}, then as a second step further adjoining function

symbols for the elements of �b to get Lb,� = Lring ∪ {b1, … , bi} ∪ {�bI ∣ I ∈ p[i]}. The disadantages of this approach

are clear: it arti�cially distinguishes a p-basis and it depends on both p and i. Moreover, when the imperfection degree

is in�nite this approach breaks down: if we expand a �eld F be constants for an in�nite p-basis, there are certainly

elementary extensions F ⪯ F ∗ in which those constants no longer form a p-basis.

Another common approach is to adjoin n-ary relation symbols, which are to be interpreted as the relation of p-

independence, i.e. LQ = Lring ∪ {Qn(x1, … , xn) ∣ n < !}. This language is better suited to the study of in�nite (or

unbounded) imperfection degree, and it does not arti�cially distinguish one p-basis. In the corresponding second step,

we might then adjoin all of the lambda maps corresponding to any p-independent tuple: these are essentially the param-

eterized lambda functions of De�nition 2.5. This potentially vast collection of maps gives rise to syntactically complex

terms, with compositions of Lring-terms and deeply nested lambda maps, with respect to di�ering p-independent tuples.

This formal complexity hides a much simpler structure.

De�nition 2.32. For p a prime number, we let Lp,� be the language with signature

{lI (x, y) ∣ I ∈ p[n], y = (yi)i<n , n < !}

consisting of a family of (1 + n)-ary function symbols indexed by p[n], with variables (x, y0, … , yn−1), for n < ! a

natural number. Any �eld F of characteristic p, which may be enriched already with additional structure, can be viewed

naturally as an Lp,�-structure: we let the interpretation of lI be the function �I , extended to be zero where it was not

before de�ned:

(a, b)⟼
{

�bI (a) a ∈ F (p)(b), b = (bi)i<n ∈ F[p]
0 else,

for each I ∈ p[n]. If F is an L-structure, expanding a �eld of characteristic p, then F̄ will denote the natural L ∪ Lp,�-

expansion of F .
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For each p ∈ P, let �p be the Lring-sentence

1 + … + 1⏟⏞⏞⏞⏟⏞⏞⏞⏟
p times

= 0,

and, for each i ∈ N, let �p,≤i be the Lring-sentence

∃b = (b0, … , bi−1) ∀a ∃y = (yI )I ∈p[i] ∶ x = ∑
I ∈p[i]

bI ypI ,

and let �p,i be the Lring-sentence

{
�p,≤0 if i = 0,
(�p,≤i ∧ ¬�p,≤i−1) if i > 0.

De�nition 2.33. For p ∈ P ∪ {0} we de�ne

Xp ∶=
{
{�p} if p > 0, and

{¬�� ∣ � ∈ P} if p = 0.
For p ∈ P and I ∈ N ∪ {∞} we de�ne

Xp,I ∶=
{
Xp ∪ {�p,I} if I < ∞, and

Xp ∪ {¬�p,≤i ∣ i ∈ N} if I = ∞.

Let

Fp,I ∶= F ∪ Xp,I for (p, I) ∈ P × (N ∪ {∞}), and

F0 ∶= F ∪ X0.
Then Fp,I is the Lring-theory of �elds of characteristic p > 0 and of elementary imperfection degree I, and F0 is the

theory of �elds of characteristic zero. These subscripts will be similarly applied to other theories of �elds T in languages

L ⊇ Lring: we write T0 = T ∪ X0, Tp = T ∪ Xp , and Tp,I = T ∪ Xp,I, for (p, I) ∈ P × (N ∪ {∞}).

These sentences and theories will be important to our work on theories of separably tame valued �elds, see 4.2.

De�nition 2.34. Let Fp,� be the Lring,p,�-theory extending Fp by axioms that ensure the new function symbols are

interpreted suitably as the parameterized lambda maps. For any Lring-theory T of �elds of characteristic p, we let

T�(p) ∶= T ∪ Fp,� be the natural Lring,p,�-theory extending T .

Fact 2.35. We have already pointed out that each F ⊧ Fp admits a natural expansion F̄ to an Lring,p,�-structure. In fact,
F̄ is the unique Lring,p,�-structure expanding F to a model of Fp,� , and the extra structure of F̄ is Lring-de�nable in F . A
ring morphism ' ∶ E → F between �elds of characteristic p is separable if and only if ' is an Lring,p,�-embedding Ē → F̄ .
This gives an isomorphism of categories between the category of �elds of characteristic p, equipped with separable �eld
embeddings, and the category of Lring,p,�-structures that are models of Fp,� , equipped with Lring,p,�-embeddings.

Remark 2.36. The language Lp,� is suitable for studying �elds of in�nite imperfection degree, and even allows a uniform

approach to �elds of varying elementary imperfection degree. Nevertheless, if we are willing to focus on �elds of

imperfection degree bounded by some �nite i ∈ N, we may instead work with a more closely adapted sublanguage

Lp,i,� ⊆ Lp,� which has the signature

{lI (x, y) ∣ I ∈ p[i], y = (y0, … , yi−1)},

consisting of those (1 + i)-ary function symbols from Lp,� that are indexed by I ∈ p[i]. Any �eld F of characteristic p
can be viewed naturally as an Lp,i,�-structure by taking the reduct of the natural Lp,�-structure. Moreover, for many

purposes, if T is a theory of �elds of characteristic p with imperfection degree bounded by some i ∈ N, the role played

by T�(p) may be adequately played by its Lring,p,i,� = Lring ∪ Lp,i,�-reduct.

It is also possible to remove the dependence on p in the languages and theories introduced above, albeit rather

inelegantly.

De�nition 2.37 (Uniformity in p). Let L� be the language with signature

{lp,I (x, y) ∣ p ∈ P, I ∈ p[n], y = (yi)i<n , n < !},
which amounts to the disjoint union of the signatures ofLp,� , for p any prime number. Now, any �eld F may be expanded

to an L ∪ L�-structure F̃ : let the interpretation of lp,I be the following function

(a, b)⟼
{

�bI (a) a ∈ F (p)(b), b = (bi)i<n ∈ F[p], p = char(F ),
0 else.

Thus if F is of characteristic zero, all these function symbols are interpreted by the zero function.

De�nition 2.38. We let F� be the Lring,� = (Lring ∪ L�)-theory extending F by axioms that ensure the new function

symbols are suitably interpreted as the parameterized lambda maps, when p is the (positive) characteristic, and as the
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zero function, otherwise. In this way we may naturally extend any theory T of �elds (possibly enriched to L-structures

for some L ⊇ Lring) to a theory T� of (L ∪ L�)-structures.

Fact 2.39. The analogue of Fact 2.35 applies toL� : each F ⊧ F admits a natural expansion F̃ ⊧ Th(F )� to anLring,�-structure,
and the extra structure of F̃ is Lring-de�nable in F .

Remark 2.40 (Separably closed �elds). As mentioned above, the languages Lring,p,� are not new, and have been used

to study the theory of separably closed �elds, alongside the languages Lb and LQ . Let SCF be the theory of separably

closed �elds in the language Lring of rings. In [Erš65], Ershov showed that the completions of SCF are SCF0 ∶= ACF0
and SCFp,I for p ∈ N and I ∈ N ∪ {∞}. Later Wood, in [Woo79], showed that each SCFp,I is stable, not superstable. In

[Del82], Delon showed that SCF is model complete in Lb , when the imperfection degree is �nite, and in LQ in general.

Moreover, Delon showed that SCF admits quanti�er elimination in Lring,p,� , Still later, [CC+87] studied types in SCF
using the language Lring,p,� . In a di�erent direction, Srour has shown in [Sro86] that, SCFp,I is equational in Lb,� , for

I < ∞.

Proof of Theorem 1.1. We recall the setting of the theorem: F/C is a separable �eld extension, c ∈ C[[p]], and a is any well-

ordered subset of F . In De�nition 2.26 we already have given the de�nition of �F/ca as the union of two well-ordered

subsets of F , �IF /ca and �SF/ca, where the former is p-independent in F , and the latter is a subset of C(�SF/ca)
(p)(�IF /ca).

The �rst claim (i) was proved in Proposition 2.27 (i), and we saw in Lemma 2.28 that, when F = C(a, b) is �nitely

generated over C , we may replace �F/ca with a �nite tuple �F/b/ca, as de�ned in De�nition 2.29, which proves (iii).
For (ii), we observe that the recursive construction of �F/ca, given in De�nition 2.22, constructs a′ and b′ using

simply repartitioning of tuples, and one application of the function �ca′ to b. Thus means that b′ is the union of b and

the interpretation of lp,I (bi , caa′), for elements bi of b and for I ∈ p[n] for n = |caa′|. In particular, b′ is formed from

L�-terms in the elements of the tuples a′, b, and c. �

3. T-henselianity, the Implicit Function Theorem, and existentially definable sets

In this section we study sets de�ned by existential formulas in the language Lring of rings, allowing parameters, in

�elds equipped with a henselian topology, in the sense of Prestel and Ziegler [PZ78], though in that paper such topo-

logical �elds are called “t-henselian” and the topologies are identi�ed with any corresponding �lters of neighbourhoods

of 0. To this end, throughout this section we suppose the following:

(†) K/C is a separable �eld extension and K admits a henselian topology � .

Note that henselian topologies are in particular “V -topologies”, which means that they are induced by valuations or

absolute values, by [KD53, Fle53]. If K is not separably closed then it admits at most one henselian topology; moreover,

if � is such a topology on K , then there is a uniformly existentially Lring-de�nable family of subsets of K that forms a

basis for the �lter of � -neighbourhoods of 0, see e.g. [PZ78, (7.11) Remark], as corrected in [Pre91, Lemma].

Remark 3.1. In algebraically closed �elds K , for example in K = C or Falgp , all in�nite de�nable subsets of 1-dimensional

a�ne space A1 (i.e. of K ) are co�nite, and so are in particular Zariski open. In real closed �elds, for example in K = R,

all in�nite de�nable subsets of A1 are �nite unions of intervals, at least one of which must be nontrivial. Thus they

have nonempty interior in the order topology. In p-adically closed �elds, for example in the �elds K = Qp of p-adic

numbers and �nite extensions thereof, all in�nite de�nable subsets of A1 have nonempty interior in the p-adic topology.

Macintyre, in his survey article [Mac86], comments on the fact that all in�nite de�nable subsets of A1 in local �elds of

characteristic zero have nonempty interior, implicitly raising the same question for local �elds of positive characteristic.

For such a �eld K = Fq((t)) it is clear that K (p) is an in�nite de�nable subset with empty interior in the t-adic topology.

Thus any reasonable analogue of Macintyre’s observation for local �elds of positive characteristic must take into account

at least additive and multiplicative cosets of tpn -adically open subsets of K (pn), taken inside K . However, as the following

example shows, even these sets are not rich enough.

Example 3.2. There is an existentially Lval(t)-de�nable subset of K = Fp((t)) which is neither an additive coset nor

a multiplicative coset in K of a subset of K (pn) with nonempty interior in the tpn -adic topology, for any n < !. For

example, if p ≠ 2, the set X = {xp + tx2p ∣ x ∈ K} is existentially Lring(t)-de�nable, and yet it is easy to see that the sets

aX + b, for a ≠ 0, have empty tp-adic interior.

For any constructible set U ⊆ An
C , i.e. a Boolean combination of subvarieties of An

C de�ned over C , we denote by

U (K) the set of K -rational points of U . For a set (or tuple) f ⊆ C[X0, … , Xn−1] of polynomials, let Z(f ) ⊆ An
C be the a�ne

variety de�ned by the vanishing of f .

De�nition 3.3. For an m-tuple a from K , the locus of a over C , denoted locus(a/C), is the smallest Zariski closed subset

of Am
C , de�ned over C , of which a is an K -rational point. Equivalently, locus(a/C) is the a�ne variety de�ned by the

vanishing of the polynomials in the prime ideal Ia ∶= {f ∈ C[x] | f (a) = 0} ⊴ C[x], where x is an m-tuple of variables.
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Problem 3.4. Let a ∈ Km
and b ∈ Kn

be tuples. Let prx ∶ Am+n → Am
be the projection on to the �rst m-coordinates.

Our aim is to locally describe the projection: prx ∶ locus(a, b/C)(K) → prx locus(a/C)(K). That is, we want to describe

the image of the map

prx ∶ locus(a, b/C)(K) ∩ U → locus(a/C)(K) ∩ prxU ,
for some � -neighbourhood U of (a, b).

The main tool we use is the Implicit Function Theorem for polynomials which, in the following form, is equivalent

to henselianity of the topology (subject to being a V -topology).

Fact 3.5 (“Implicit Function Theorem”, cf [PZ78, (7.4) Theorem]). Let (F , � ) be a V-topological �eld. Then (F , � ) is t-
henselian if and only if, for every f ∈ K[X0, … , Xm−1, Y ] and every (a0, … , am−1, b) ∈ Km+1 such that f (a0, … , am−1, b) = 0
and DY f (a0, … , am−1, b) ≠ 0, there are � -open sets U ⊆ Km and V ⊆ K such that
(i) (a0, … , am−1, b) ∈ U × V and
(ii) Z(f ) ∩ (U × V ) is the graph of a continuous function U → V .

Remark 3.6. The topological-algebraic statements in this section, including Facts 3.5 and 3.7, Lemma 3.9, and Proposi-

tion 3.10, have analogues in enriched settings, where for example we work with a �eld equipped with analytic functions,

with respect to which it satis�es the appropriate Implicit Function Theorem. Suitably adapted notions of “henselianity”

and of “locus” are needed, as well as a more careful treatment of separability and inseparability. We postpone discussion

of this topic for future work.

The following is a form of the multidimensional Implicit Function Theorem for polynomials, as given in [Kuh00, §4],

but restated for our context of �elds equipped with henselian topologies.

Fact 3.7 (Cf [Kuh00, §4]). Recall our standing assumption (†). Let f1, … , fn ∈ K[X1, … , Xl ] with n < l. De�ne the Jacobian

J̃ ∶=
⎛
⎜
⎜
⎜
⎝

)f1
)Xl−n+1 … )f1

)Xl
⋮ ⋱ ⋮
)fn

)Xl−n+1 … )fn
)Xl

⎞
⎟
⎟
⎟
⎠

,

where )
)Xi is the formal derivative with respect to Xi . Assume that f1, … , fn admit a common zero a = (a1, … , al ) ∈ K l and

that det J̃ (a) ≠ 0. Then there are some U1, … , Ul ∈ � with a ∈ ∏l
i=1 Ui such that for all (a′1, … , a′l−n) ∈ ∏l−n

i=1 Ui there exists
a unique (a′l−n+1, … , a′l ) ∈ ∏l

i=l−n+1 Ui such that (a′1, … , a′l ) is a common zero of f1, … , fn .

Proof. The analogous statement for the particular case of topologies induced by nontrivial henselian valuations is given

in [Kuh00, §4]. This version follows because (K , � ) is locally equivalent to a topological �eld (L, �w ), where �w is the

topology induced by a nontrivial henselian valuation w on L, and the statement of this lemma is expressed by a local

sentence (in the sense of [PZ78, §1]). �

For brevity, for Zariski constructible sets A, B ⊆ An
C , and a neighbourhood U in a topology on Kn

, we write A ≲U B
to mean that A(K) ∩ U ⊆ B(K) ∩ U , and we write A ≃

U B to mean both A ≲U B and B ≲U A. The following lemma is just

a basic fact of algebraic geometry, which we restate and prove in our language, for lack of a suitable reference.

Lemma 3.8. Let F/C be a �eld extension and let a = (aj )j<n ∈ Fn . For each j < n, choose gj ∈ C[X0, … , Xj] and
ℎj ∈ C[X0, … , Xj−1] such that if aj is algebraic over C(a0, … , aj−1) then

gj (a0, … , aj−1, Xj )
ℎj (a0, … , aj−1)

is its minimal polynomial, otherwise if aj is transcendental over C(a0, … , aj−1) then gj = 0 and ℎj = 1 are constant polyno-
mials.
(i) For any �nitely many polynomials (fi)i<l ⊆ C[X0, … , Xn−1] with fi(a) = 0 there is a Zariski open set U ⊆ Fn , with

a ∈ U , such that

Z(g0, … , gn−1) ≲U Z(f0, … , fl−1).
(ii) There exists a Zariski open set V ⊆ Fn , with a ∈ V , such that for each j ∈ {0, … , n} we have

locus(a/C) ≃

V locus(a0, … , aj−1/C) ∩ Z(gj , … , gn−1).
In particular, taking j = 0, we have locus(a/C) ≃

V Z(g0, … , gn−1).

Proof. To prove (i): we proceed by induction on n. The base case n = 0 is vacuous. As an inductive hypothesis, we

suppose that the statement of the lemma holds for some n < !. Let a ∈ Fn . By Noetherianity, Ia = {f ∈ C[X] ∣ f (a) = 0}
is a �nitely generated deal of C[X]. Let f ′ = (f ′ℎ)ℎ<k be a choice of generators, so Z(f ′) = locus(a/C). By the inductive

hypothesis applied to these generators f ′, there is a Zariski-open set U ′ ⊆ Fn , with a ∈ U ′
, such that Z(g0, … , gn−1) ≲U ′

Z(f ′). Since anyway locus(a/C) ⊆ Z(g0, … , gn−1), we have Z(g0, … , gn−1) ≃

U ′ Z(f ′) ≃

U ′ locus(a/C). Let b ∈ F be any

other element. Let f = (fi)i<l ⊆ Ia,b be �nitely many polynomials such that fi(a, b) = 0. Let i < l. Case (a): suppose



12 SYLVY ANSCOMBE

�rst that fi(a, Y ) is the zero polynomial in Y . Then fi(X , Y ) = fi(X ) ∈ Ia . Case (b) is the more interesting case: suppose

that fi(a, Y ) is not the zero polynomial in Y . This implies that b is algebraic over C(a), and in particular that gn(a, Y ) is

nonzero. Since gn(a, Y )/ℎn(a) is the minimal polynomial of b over C(a), there exist pi ∈ C[X , Y ] and qi ∈ C[X] such that

qi(a) ≠ 0 and

pi(a, Y )gn(a, Y )
qi(a)ℎn(a)

= fi(a, Y ).

This means that there exists ri ∈ C[X] such that ri(a) = 0 and pign = qiℎnfi + ri in C[X , Y ]. Let

U = U ′ ⧵ Z(ℎn , qi ∣ i < l is in case (b))(F ),

be the complement in U ′
of the vanishing locus of these denominator polynomials, as a Zariski open subset of Fn+1

with (a, b) ∈ U . It remains to verify that Z(g0, … , gn) ≲U Z(f ). Let (a′, b′) ∈ Z(g0, … , gn)(F ) ∩ U , and i < l. This implies

that a′ ∈ locus(a/C)(F ). If i is in case (a) then fi ∈ Ia , so already fi(a′, b′) = 0. Otherwise if i is in case (b) we have

ri(a′) = 0, qi(a′) ≠ 0, and ℎn(a′) ≠ 0. Then it follows from gn(a′, b′) = 0 that also in this case we have fi(a′, b′) = 0. Thus

(a′, b′) ∈ Z(f0, … , fl−1)(F ), which that proves Z(g0, … , gn) ≲U Z(f ), �nishing the induction.

To prove (ii): let j ∈ {0, … , n} and notice that locus(a0, … , aj−1/C) ⊆ Z(g0, … , gj−1). Applying (i) to a set of generators f
for I(a0,…,aj−1), we haveZ(g0, … , gj−1) ≃Vj locus(a0, … , aj−1/C) for some Zariski openVj ⊆ F j . Finally letV ∶= ⋂n

j=0 Vj×Fn−j .
It is easy to see that this set V is a Zariski open subset of Fn with a ∈ V , and that satis�es the statement of the lemma. �

The next lemma improves on [Ans19, Lemma 19] by allowing arbitrary separable extensions C(a, b)/C(a), instead of

assuming that a is a separating transcendence basis of C(a, b)/C .

Lemma 3.9 (Separable projection of loci). Recall our standing assumption (†). Let (a, b) ∈ Km+n and suppose that
C(a, b)/C(a) is separable. Let b1 ⊆ b a separating transcendence base of C(a, b)/C(a) [which exists by Lemma 2.1], let
b2 ∶= b ⧵ b1, and let n = n1 + n2 be the corresponding partition of n. There exists � -neighbourhoods U , V1, and V2 of a, b1,
and b2, respectively, such that

locus(a, b/C)(K) ∩ (U × V1 × V2)
is the graph of a continuous function

f ∶ (locus(a/C)(K) × Kn1 ) ∩ (U × V1) → V2.
In particular, the projection of locus(a, b/C)(K) onto the �rst m coordinates contains locus(a/C)(K) ∩ U .

We say that the projection locus(a, b/C)(K) → locus(a/C)(K) is “locally surjective”.

Proof. We adapt the proof of [Ans19, Lemma 19], though in the context of henselian topologies as in Fact 3.7. Let

X = (Xi)i<m and Y = (Yj )j<n be tuples of variables, of lengths m and n, to correspond to a and b, respectively. We reorder

b and Y , if necessary, so that the variables (Y0, … , Yn1−1) correspond to b1 and whereas (Yn1 , … , Yn−1) correspond to b2.
For each j ∈ {n1, … , n − 1}, let gj ∈ C[X , Yj0 ∣ j0 ≤ j] and ℎj ∈ C[X , Yj0 ∣ j0 < j] be such that ℎj (a, b0, … , bj−1) ≠ 0 and

gj (a, b0, … , bj−1, Yj )
ℎj (a, b0, … , bj−1)

is the minimal polynomial of bj over C(a, bj0 ∣ j0 < j). For j < n1, we let gj be the zero polynomial, and we set ℎj = 1
(or even leave it unde�ned). We are in exactly the setting of Lemma 3.8 (ii), so by that lemma there is a Zariski open set

W ⊆ Km+n
such that

locus(a, b/C) ≃

W locus(a/C) × Z(g0, … , gn−1)
Clearly Z(g0, … , gn−1) = Z(gn1 , … , gn−1). Thus

locus(a, b/C) ≃

W (locus(a/C) × An
C ) ∩ Z(gn1 , … , gn−1).

For each j ∈ {n1, … , n − 1}, since bj is separably algebraic over C(a, b0, … , bj−1), we have both gj (a, b0, … , bj ) = 0 and

)
)Yj gj (a, b0, … , bj ) ≠ 0. Again we de�ne the Jacobian

J̃ ∶=
⎛
⎜
⎜
⎜
⎝

)gn1
)Yn1

… )gn1
)Yn−1

⋮ ⋱ ⋮
)gn−1
)Yn1

… )gn−1
)Yn−1

⎞
⎟
⎟
⎟
⎠

and observe that J̃ (a, b) is a lower triangular matrix with no zeroes on the diagonal, thus det J̃ (a, b) ≠ 0. By the Implicit

Function Theorem for polynomials, Fact 3.7, there are � -neighbourhoods U ⊆ Km
of a, V1 ⊆ Kn1

of b1, and V2 ⊆ Kn2
of

b2, such that

Z(gn1 , … , gn)(K) ∩ (U × V1 × V2)
is the graph of a continuous function U × V1 → V2. In fact, by continuity, and since � re�nes the Zariski topology (on

K -rational points of a�ne space), we may even ensure that U × V1 × V2 ⊆ W . Simply intersecting with the K -rational
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locus(a, b/C)

prm

��

locus(�K/b/ca, b/C)

pr�

��

�K/b/c×idn
oo

locus(a/C) locus(�K/b/ca/C)�K/b/c
oo

Figure 2. Illustration of Proposition 3.10

points of locus(a/C) × An
C , we have that

locus(a, b/C)(K) ∩ (U × V1 × V2)
is the graph of a continuous function (locus(a/C)(K) × Kn1 ) ∩ (U × V1) → V2. �

In Proposition 3.10, to address Problem 3.4, we apply our assembled ingredients to describe projections of loci having

removed the assumption that C(a, b)/C(a) is separable. Under our standing assumption (†), and following Remark 2.30,

we denote by �K/b/c ∶ A�
C → Am

C the coordinate projection that maps �K/b/ca ↦ a, where c ∈ C[[p]], (a, b) ∈ Km+n
, and

� = |�K/b/ca|.

Proposition 3.10 (Arbitrary projection of loci). Recall our standing assumption (†). Let c ∈ C[[p]] and let (a, b) ∈ Km+n .
Let b1 ⊆ b a separating transcendence base of C(�K/b/ca, b)/C(�K/b/ca) [which exists by Lemma 2.1], let b2 ∶= b ⧵ b1, and
let n = n1 + n2 be the corresponding partition of n. There exist � -neighbourhoods U , V1, and V2 of �K/b/ca, b1, and b2,
respectively such that
(i) locus(a, b/C)(K) contains the image of the graph of a continuous function

f ∶ (locus(�K/b/ca/C)(K) × Kn1 ) ∩ (U × V1) → V2,

under the coordinate projection �K/b/c × idn ∶ A�+n
C → Am+n

C , and
(ii) the image of the projection prm ∶ locus(a, b/C)(K) → locus(a/C)(K) onto the �rst m coordinates contains the image

of locus(�K/b/ca/C)(K) ∩ U under the coordinate projection �K/b/c ∶ A�
C → Am

C .

Proof. Forgetting the matter of the K -rational points for a moment, the projection prm ∶ locus(a, b/C) → locus(a/C)
(restricted from the coordinate projection Am+n

C → Am
C ) is associated to the extension of function �elds C(a, b)/C(a).

Observe that if this extension is separable, we may directly apply Lemma 3.9, which gives the statement of the propo-

sition, since in this case �K/b/ca = a. In general, at least we have that the extension C(�K/b/ca, b)/C(�K/b/ca) is always

separable, by Lemma 2.28 and De�nition 2.29. This extension is associated to the projection

pr� ∶ locus(�K/b/ca, b/C) → locus(�K/b/ca/C),
which is restricted from A�+n

C → A�
C . This projection, together with the projection

�K/b/c ∶ locus(�K/b/ca/C) → locus(a/C),
itself restricted from A�

C → Am
C , naturally forms the commutative square illustrated in Figure 2. Of course the same

diagram makes sense and commutes when we restrict our attention to the K -rational points. Applying Lemma 3.9 to

the right-hand side of the square, we obtain the � -neighbourhoods U , V1, and V2 such that

locus(�K/b/ca, b/C)(K) ∩ (U × V1 × V2)
is the graph of a continuous function

f ∶ (locus(�K/b/ca/C)(K) × Kn1 ) ∩ (U × V1) → V2.

Claim (i) follows by applying �K/b/c × idn . Next we observe that the image of

prm ∶ locus(a, b/C)(K) → locus(a/C)(K)
must contain the image of locus(�K/b/ca, b/C)(K) under the composition prm◦(�K/b/c × id

n). Since the square of maps

commutes, prm(locus(a, b/C)(K)) contains the image of locus(�K/b/ca/C)(K) under the composition �K/b/c×pr� . By “local

surjectivity”, the latter contains the image of locus(�K/b/ca/C) ∩ U under �K/b/c , which proves (ii). �

Proof of Theorem 1.2. Let X ⊆ Km
be a existentially Lring(C)-de�nable, as in the statement of the theorem. By standard

reductions in the �rst-order theory of �elds, X is the projection onto Km
of the set of K -rational points of an a�ne

subvariety V ⊆ Am+n
C , i.e. prmV (K) = X . For a ∈ X , there exists b ∈ Kn

such that (a, b) ∈ V (K), and therefore

locus(a, b/C) ⊆ V and prmlocus(a, b/C)(K) ⊆ prmV (K) = X . By Proposition 3.10 (ii), there exists a � -neighbourhood U
such that prmlocus(a, b/C)(K) contains the image of locus(�K/b/ca/C)(K)∩U under the coordinate projection �K/b/c . �

Remark 3.11. We brie�y comment informally on the strengths and shortcomings of Proposition 3.10. It is clear that

this result is not anything like as powerful as a true quanti�er elimination result. Indeed, quanti�er elimination cannot
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possibly hold at this generality, i.e. in the theory of all henselian nontrivially valued �elds of a �xed characteristic

p. Even relative to theories of value group and residue �eld, we do not have a complete theory, for example by the

counterexample developed in [Kuh01]. Nevertheless, the above Proposition shows that, at least locally in the henselian

topology, around a su�ciently generic point (since (a, b) is a generic point of locus(a, b/C)), the image of a coordinate

projection on the K -rational points is exactly the K -rational points of a set de�ned by a conjunction of atomic Lring,�-

formulas from the type of a over C . This may be seen as giving some kind of normal form for subsets of henselian

valued �elds that are de�ned by existential Lring-formulas, at least locally around a given point.

In the present article, the principal application of Proposition 3.10 is the following theorem.

Theorem 3.12. Let K be a �eld equipped with a henselian topology � , let C ⊆ K be a sub�eld, and let A ⊆ K be a subset
de�ned by an existential Lring-formula with parameters from C . Exactly one of (i) or (ii) holds:
(i) A is a �nite subset of the relative algebraic closure of ΛKC in K ,
(ii) A is in�nite and there is a de�nable injection g ∶ U ◦

1 → A, perhaps involving extra parameters, where U ◦
1 is a non-

empty Zariski open subset of a � -neighbourhood U1, such that each element of U ◦
1 is interalgebraic with its image

under g over the parameters.
Moreover, if C ⊆ K (p∞), then exactly one of (i) and (ii’) holds where:
(ii’) there exists m < ! such that A contains the K (pm)-points of a nonempty � -open set.

Proof. By our hypotheses and the usual reductions in the �rst-order theory of �elds, there is a positive quanti�er-free

Lring-formula '(x, y, z) and a z-tuple c0 ⊆ C of parameters such that the formula ∃y '(x, y, c0) de�nes the set A in K .

Denote D ∶= ΛKC . As a special case, we �rst suppose that there exists a ∈ A that is transcendental over D. There exists

b ∈ Kn
such that K ⊧ '(a, b, c0). It follows that pr1(locus(a, b/D)(K)) ⊆ A. Let c ∈ D[[p]] and observe that �K/b/ca is a

�nite tuple, by Theorem 1.1 (iii). Decompose �K/b/ca = e1ae2 by choosing e1 to be a separating transcedence basis of

D(�K/b/ca)/D, by Lemma 2.1 (iv). By Lemma 3.9, there are � -neighbourhoods U , V such that

locus(�K/b/ca/D) ∩ (U × V )
is the graph of a continuous function

f ∶ locus(e1/D) ∩ U → V .
We now repeat an argument used in [Ans19, Lemma 22]: Since e1 is algebraically independent over C , and a is alge-

braically dependent on D(e1) but transcendental over D, there exists a singleton e1,1 ∈ e1 such that e1,1 and a are inter-

algebraic over E ∶= D(e1,2), where e1,2 ∶= e1 ⧵ {e1,1}. By reordering e1 if necessary we may even suppose e1 = e1,1ae1,2.
Let N ∈ N be such that the interalgebraicity of e1,1 and a over E is witnessed by a polynomial ℎ ∈ E[X , Y ] of degree at

most N with coe�cients consisting of Lring,�-terms in c0 ∪ e1,2 of complexity at most N (for any reasonable notion of

the complexity of terms). Let U1 be a � -neighbourhood of e1,1 and U2 be a � -neighbourhood of e1,2, chosen such that

U1 × U2 ⊆ U . Then f restricts to a continuous function

locus(e1,1, e1,2/D) ∩ (U1 × U2) → V .
It follows that for the continuous map

g ∶ U1 → pr1(locus(a, b/E))
u ↦ �K/b/c (u, e1,2, f (u, e1,2)),

whenever u ∈ U1 is transcendental over E, E(u, g(u)) is isomorphic to E(e1,1, a), over E, via (u, g(u)) ↦ (e1,1, a). In

particular u and g(u) ∈ prx (locus(a, b/C)) ⊆ A are interalgebraic over E, and this is also witnessed by the polynomial ℎ.

When restricted to the subset of U1 consisting of those u trancendental over E, g is even a bijection. By compactness

both the bijectivity and the interalgebraicity hold for a Zariski-open subset U ◦
1 of U1. In particular, since K is in�nite, so

is the image of g. This proves that (ii) holds in this special case.

Next suppose simply that A is in�nite. Then passing to an ℵ0-saturated extension K ∗ ⪰ K , the set A∗ de�ned in K ∗ by

∃y '(x, y, c0) contains an element a that is transcendental over D. We apply the argument of the previous paragraph to

A∗ in K ∗, and observe that the conclusion is elementary, thus also holds for A in K . This proves that (ii) holds. If A is

both �nite and contains no elements transcendental over D, then (i) certainly holds. This proves the dichotomy.

Finally, we suppose C ⊆ K (p∞), whence D = Cperf ⊆ K (p∞) ⊆ (K ∗)(p∞). Observe that ΛK ∗D(a) = D(ap
−m1 ), where m1 is

the unique natural number such that a ∈ (K ∗)(pm1 )⧵(K ∗)(pm1+1), or is in�nity if a ∈ K (p∞). It follows that there is a (possibly

di�erent) natural number m such that b is separable over D(ap−m ). By Lemma 3.9, there exists a � -neighbourhood U1 of

ap−m such that locus(ap−m /D)(K) ∩ U1 ⊆ pr1(locus(ap
−m , b/D)). Since we have supposed a to be transcendental over D,

locus(ap−m /D)(K) = K , and therefore it follows that U (pm)
1 ⊆ pr1(locus(a, b/D)(K)) ⊆ X . Finally we note that a ∈ U (pm)

1
and there is a � -neighbourhood U ′

1 of a such that U ′
1 ∩ K (p

m) ⊆ U (pm)
1 , which proves that (ii’) holds. �

We denote the existential Lring-algebraic closure (in the model-theoretic sense) of A ⊆ K by aclK∃ A. This is the union

of those �nite subsets of K that are de�nable by an existential Lring-formula, with parameters from A. Similarly, we

denote the existential Lring-de�nable closure (again in the model-theoretic sense) by dclK∃ A.
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Corollary 3.13. Let K be a �eld with a henselian topology � , and let B ⊆ K be a subset. Then
(i) dclK∃ (B) contains ΛKF(B) and is contained in the (�eld theoretic) relative algebraic closure of ΛKF(B) in K , and
(ii) aclK∃ (B) is equal to the (�eld theoretic) relative algebraic closure of ΛKF(B) in K .

Proof. In any �eld F , with B ⊆ F , we have ΛFF(B) ⊆ dclF∃ (B), for example by Theorem 1.1, so in particular this holds

for F = K . Now, let A ⊆ K be a subset de�ned by an existential Lring-formula with parameters from C ∶= ΛKF(B). If

any element of A is transcendental over C then A is in�nite, by Theorem 3.12. In particular, aclK∃ (B) is a subset of the

relative algebraic closure of C in K , proving (i). Conversely, every element a of the relative algebraic closure of C in K
is contained in a �nite set A that is de�nable over C by an existential Lring-formula '(x, c), with parameters c from C .

Since C itself is a subset of dclK∃ (B), as we have already established, both ' and c may be replaced by another existential

Lring-formula  (x, b) with parameters b from B, such that A is de�ned by  (x, b) in K . This proves (ii). �

Corollary 1.3 follows immediately.

4. Separably tame valued fields

The main aim of this section is to extend the account of separably tame valued �elds, as developed by Kuhlmann and

Pal ([KP16]) to allow in�nite imperfection degree. For this we will make (rather mild) use of Lambda closure ΛF from

section 2. Let Lring = {+, ×, −, 0, 1} be the language of rings, let Loag be the language of ordered abelian groups, and let

Lval be the three-sorted language of valued �elds with sorts K, k, and �. The �rst two are endowed with Lring, and the

last with Loag, moreover there is a symbol for the valuation map from K to �, and for the residue map from K to k.

Remark 4.1. In this section we write K, Ki , … , etc., for expansions of valued �elds. The valuation will be usually be

denoted by v, with subscripts or other decorations used to indicate to which valued �eld the valuation belongs, e.g. vi
is the valuation from Ki . Likewise Γi = viKi and ki = Kivi are the value group and residue �eld, respectively, of Ki .

In the present section, we will follow a convention that di�ers from that of section 2, in which p played the role of the

characteristic exponent. From now on, we are concerned with valued �elds K of equal characteristic, and p will always

represent the characteristic (of both K and of its residue �eld k), and p̂ the corresponding characteristic exponent:

Convention 4.2. For p ∈ P ∪ {0}, we let p̂ = p if p ∈ P, and p̂ = 1 if p = 0.

Remark 4.3. When formalizing valued �elds in model theory, we have the usual choice of alternative languages. Instead

of Lval, we might use a one-sorted language L1val ∶= Lring ∪ {O}, where O is a unary predicate symbol, intended to be

interpreted by the valuation ring; or we might use a two-sorted language L2val with sorts K and �, and with a function

symbol from K to �. For the results of this paper, the precise choice of language of valued �elds does not matter. For

example, both Theorem 1.5 and Corollary 1.6 remain true when replacing Lval by another language L, provided that the

Lval- and L-structures are biinterpretable, and that the interpretations of both the value group and residue �eld are by

both existential and universal formulas. This latter condition ensures that, for example, existential Lring-sentences in

the theory of the residue �eld are interpreted by existential sentences in the L-theory of the valued �eld. In particular,

these conditions hold for the languages L1val and L2val.

We denote by Lval,� = Lval ∪ L� the expansion of Lval by symbols for the parameterized lambda functions, uniform

across all characteristics, as introduced in 2.3. For an expansion L ⊇ Lval, any L-theory T of valued �elds is in particular

an expansion of an Lring-theory of �elds, thus T� denotes its natural (L ∪L�)-expansion, as described in De�nition 2.38.

Fact 4.4. The analogue of Facts 2.35 and 2.39 applies to embeddings of valued �elds: that is, each valued �eld F admits a
natural expansion F̃ ⊧ Th(F )� to anLval,�-structure, and anLval-embedding between F1 and F2 is in fact anLval,�-embedding
between F̃1 and F̃2 if and only if it is separable, as an embedding of �elds.

De�nition 4.5. A valued �eld K is separably tame if it is separably defectless, has perfect residue �eld, and p̂-divisible

value group. Let STVF be the Lval-theory of separably tame valued �elds. For p ∈ P ∪ {0}, we let STVFp ∶= STVF ∪ Xp
be the theory of separably tame valued �elds of equal characteristic p. For (p, I) ∈ P × (N ∪ {∞}), we let STVFp,I ∶=
STVFp ∪ Xp,I be the theory STVFp extended by axioms for the elementary imperfection degree to be I. To any of these

theories the superscript "
eq

" will indicate the addition of axioms to ensure that the valued �eld is of equal characteristic,

though of course in the case of positive characteristic, which is our main fare, equal characteristic is automatic.

For example, STVFeq0 is the Lval-theory of separably tame valued �elds of equal characteristic zero (which are in fact

automatically tame). We recall the following theorem.

Theorem 4.6 ([KP16, Theorem 1.2]). The class Mod(STVFp,i) of all separably tame valued �elds of �xed characteristic
p > 0 and �xed �nite imperfection degree i ∈ N is an AKE∃-class in LQ , an AKE≺-class in LQ , and an AKE≡-class in Lval.

First, a small detail: we prefer to write AKE⪯∃ where Kuhlmann and Kuhlmann–Pal write AKE∃ because we wish to

include principles like AKE≡∃ , and the earlier notation risks ambiguity.

We extend this theorem by strengthening the underlying embedding lemma from [KP16], which is closely based on

the one from [Kuh16]. The AKE principles may then be stated uniformly for the class of separably tame valued �elds
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of equal characteristic. In particular, this extends the known Ax–Kochen/Ershov phenomena to the case of in�nite

imperfection degree.

Remark 4.7. Let SCVF be the theory of separably closed valued �elds, in the language Lval of valued �elds. It is known

since work of Delon (e.g. [Del82]) that the completions of SCVF are SCVF0 and SCVFp,I, for (p, I) ∈ P × (N ∪ {∞}).
Indeed, Hong showed in [Hon16] that SCVF has QE in Lval,� , for p > 0.

The following two theorems, due to Kuhlmann and Knaf–Kuhlmann, are the most powerful ingredients of the Em-

bedding Lemma, in all of its forms: those from [Kuh16, KP16] and Theorem 4.19.

Theorem 4.8 (Strong Inertial Generation, [KK05, Theorem 3.4], [Kuh16, Theorem 1.9]). Let L/K be a function �eld
without transcendence defect, where K is defectless. Suppose also that Lv/Kv is separable and vL/vK is torsion free. Then
L/K is strongly inertially generated.

Theorem4.9 (Henselian Rationality, [Kuh16, Theorem 1.10]). Let L/K be an immediate function �eld (a �nitely generated
and regular extension) of dimension 1, where K is separably tame. Then L ⊆ K(b)ℎ for some b ∈ Lℎ.

4.1. The Lambda relative embedding property of separably tame valued �elds. Let L be an expansion of Lval,
and let C be a class of L-structures expanding valued �elds.

De�nition 4.10 (Lambda relative embedding property). We say that C has the Lambda relative embedding property
(ΛREP) if

— for all K1, K2 ∈ C that extend a separably tame K for which

(i) K1/K and K2/K are separable,

(ii) imp(K1/K) ≤ imp(K2/K),
(iii) K1 is ℵ0-saturated, K2 is |K1|+-saturated,

(iv) vK1/vK is torsion free and K1v/Kv is separable, and

(v) � ∶ vK1 →vK
vK2 and � ∶ K1v →

Kv
K2v;

— there exists a separable embedding � ∶ K1 → K2 inducing � and � .

Remark 4.11. We compare the ΛREP with the SREP, as expressed in [KP16, §4]. The points at which ΛREP di�ers

from SREP are underlined, above, with the key strengthened conclusion of ΛREP also underlined. Strictly speaking,

the two properties are incomparable: the hypotheses are stronger, i.e. the extension K2/K is separable and we suppose

an inequality between imperfection degrees, but the conclusion of the ΛREP is also stronger, i.e. the embedding � is

separable.

Remark 4.12. The hypothesis (ii) on imperfection degrees is a natural one, given that our aim is to separably embed K1
into K2 over K . Regarding (iv), note that both ΛREP and SREP suppose K1v/Kv to be separable, but this is redundant

in the case that v is nontrivial on K , because then Kv is perfect, since K is separably tame. Similarly, note that � is not

assumed to be separable in (v), however this is automatic when v is nontrivial on K , for then again Kv is perfect.

Remark 4.13. The REP, as expressed in [Kuh16], appears to have weaker hypotheses than SREP and ΛREP (aside from

the obvious issues around separability), but this is not a material distinction. The conjunction of the hypothesis that K is

defectless with the shared hypothesis (iv) is essentially equivalent to our hypothesis that K is separably tame: whenever

REP is to be veri�ed in a class of (separably) tame valued �elds, any common valued sub�eld K satisfying the hypotheses

is necessarily (separably) tame.

Lemma 4.14 (Separable going down, [KP16, Lemma 2.17]/[Kuh16, Lemma 3.15]). Let L be a separably tame valued �eld,
and let K ⊆ L be a relatively algebraically closed sub�eld, equipped with the restriction of the valuation on L. If the residue
�eld extension Lv|Kv is algebraic, then (K , v) is also a separably tame valued �eld, and moreover, vL/vK is torsion free and
Lv = Kv.

The following lemma is preparation for the new step in the proof of Theorem 4.19. This method, informally termed

“wiggling”, is applied in forthcoming papers by Jahnke and van der Schaaf on separable taming [JS25], and by Soto

Moreno [SM25] on relative quanti�er elimination in separably algebraically maximal Kaplansky valued �elds.

Lemma 4.15. Let U be a nonempty open set in a topological �eld L and let K ⊂ L be a proper sub�eld. Then U ⧵ K is not
empty.

Proof. The sub�eld generated by any nontrivial open set B in a �eld topology is the entire �eld, since L = (U −U ) ⋅ ((U −
U ) ⧵ {0})−1. �

Lemma 4.16. Let K1, K2 be two separable �eld extensions of K , and suppose that K1/K is separated. Then every embedding
� ∶ K1 → K2 over K is separable.

Proof. Let c be a p-basis of K . Since K1/K is separated, by Lemma 2.3, c is a p-basis of K1. Since K2/K is separable, by

Lemma 2.2, c is p-independent in K2. Since � is the identity on K , �(c) = c, which shows that c is already a p-basis of the

image of �. �
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The following two lemmas provide cross-sections and sections (respectively) in su�ciently saturated henselian val-

ued �elds. Such maps give a additional structure to a valued �eld, and cross-sections especially have been part of

standard approaches to Ax–Kochen/Ershov phenomena since the �rst papers.

Lemma 4.17 ([vdD14, Proposition 5.4]). Let s0 ∶ Δ → K× be a partial cross-section of v such that Δ is pure in Γv . Then
there is an elementary extension K ⪯ K ∗ of valued �elds, with a cross-section s ∶ vK ∗ → K ∗× of the valuation on K ∗ that
extends s0.

Lemma 4.18 ([ADF23, Proposition 4.5]). Let K be a henselian valued �eld. For every partial section �0 ∶ k0 → K of resv
with Kv/k0 separable there exists an elementary extension K ⪯ K ∗ of valued �elds, with a section � ∶ K ∗v∗ → K ∗ of the
residue map resv∗ on K ∗ that extends �0.

In the following, when we speak of embeddings we mean embeddings of valued �elds.

Theorem 4.19. Mod(STVFeq) has the ΛREP.

We follow very closely the embedding arguments in [Kuh16, KP16], only giving full details and making changes

where necessary. Thus the reader might want to read this proof alongside those others.

Proof. We work only in equal positive characteristic, since in equal characteristic zero (and even in mixed characteristic)

every separably tame valued �eld is tame, and theΛREP becomes equivalent to the REP. Suppose that we haveK, K1, K2 ∈
Mod(STVFeq), where K is a common valued �eld of K1 and K2, satisfying the hypotheses (i)–(v) of the ΛREP.

By saturating the triple (K , K1, K2), if necessary, we may assume by Lemma 4.17 that there is a cross-section � ∶
vK → K×, and by Lemma 4.18 that there is a section � ∶ Kv → K . By hypothesis (iv), v1K1/vK is torsion-free and

K1v1/Kv is separable. Since � and � are embeddings, also �(v1K1)/vK is torsion-free and �(K1v1)/Kv is separable. Thus,

by further saturating K1 and K2, if necessary, again by Lemmas 4.17 and 4.18, there are extensions �1 ∶ vK1 → K×1 and

�2 ∶ �(vK1) → K×2 of � , and extensions �1 ∶ K1v → K1 and �2 ∶ �(K1v) → K2 of � . Note that these saturation steps

preserve the hypotheses of the ΛREP, so these reductions are without loss of generality.

Let K0 ∶= K(�1(K1v), �1(vK1))rac be the relative algebraic closure in K1 of the �eld generated over K by the images of

the section and cross-section. As argued in [KP16], K0/K is without transcendence defect, and so every �nitely generated

subextension F/K of K0/K is strongly inertially generated, by Theorem 4.8. By compactness, as in [Kuh16], there is an

Lval,�-embedding �0 ∶ K0 → K2 such that �0◦�1 = �2◦� and �0◦�1 = �2◦� . Thus �0 induces � and � .

Note that K0/K is separated, since K1v is perfect and vK1 is p-divisible. Moreover K2/K is separable by hypothesis (i),
so �0 is automatically separable, by Lemma 4.16, i.e. K2/�0(K0) is separable. By Lemma 4.14, K0 is also separably tame,

and K1/K0 is immediate.

Let b = (b�)�<� ⊆ K1 be a p-basis of K1 over K0. For � ≤ � , let K0,� ∶= K0(b�)rac�<� be the relative algebraic closure of

K0(b�)�<� in K1. Note that each K0,� is separably tame, by Lemma 4.14. Since K0,� is the relative algebraic closure in K1
of K0(b), and b is a p-basis of K0,� over K0, thus K1/K0,� is separated, using hypothesis (i). We will prove the following

claim.

Claim 4.19.1. There is a separable Lval,�-embedding �0,� ∶ K0,� → K2 extending �0.

Proof of claim. We will build a chain of separable Lval,�-embeddings �0,� ∶ K0,� → K2 for � ≤ � . We proceed inductively,

noting that the base case is trivial since K0,0 = K0. The limit stage is also easy: a union of a chain of Lval,�-embeddings is

an Lval,�-embedding. We assume as an inductive hypothesis that �0 is already extended to a separable Lval,�-embedding

�0,� ∶ K0,� → K2. Let c ∈ K0,�+1. Then c is separably algebraic over K0,�(b�). By Theorem 4.9 (Henselian Rationality),

there exists d ∈ K0,�(b� , c) such that K0,�(b� , c)ℎ = K0,�(d)ℎ. It is clear that d is inter-p-dependent with b� in K1 over

K0,� . In particular, d is p-independent in K1 over K0,� .

Let (d� )�<� be a pseudo-Cauchy sequence in K0,� , without pseudo-limit there, of which d is a pseudo-limit. By

Kuhlmann–Pal (speci�cally by [KP16, Lemma 3.11]), and since K0,� is separably tame (so in particular separably alge-

braically maximal), (d� )�<� is of trancendental type. By Kaplansky’s second theorem, [Kap42, Theorem 2], its quanti�er-

free Lval-type q(x) over K0,� is implied by formulas of the form v(x − d� ) ≥ 
� , where 
� = v(d�+1 − d� ). Any �nitely

many such formulas are already realised in K0,� . Let q�(x) be the image of q(x) by translating the parameters in each

formula by �0,� . Then q�(x) is implied by formulas of the form v(x − �0,�(d� )) ≥ �(
� ). Any �nitely many such formulas

are realised in �0,�(K0,�), and in particular q�(x) is consistent. By saturation of K2, there is even a nontrivial ball B in

K2 which is the set of realisations of q�(x). Since imp(K1/K) ≤ imp(K2/K), and by saturation, i.e. by hypotheses (ii,iii),
we have that K (p)2 �0,�(K0,�) is a proper sub�eld of K2. Now comes the wiggling: there exists d′ ∈ B ⧵ K (p)2 �0,�(K0,�), by

Lemma 4.15. Then d′ is p-independent in K2 over �0,�(K0,�) and also realises q�(x). Via the assignment d ↦ d′ we extend

�0,� to a separable Lval,�-embedding K0,�(d)ℎ → K2.
By the Primitive Element Theorem, this already shows how to extend �0,� to a separable Lval,�-embedding into K2

of any �nite separably algebraic extension of K0,�(b�) inside K0,�+1 . By the Compactness Theorem, we extend �0,� to

a separable embedding �0,�+1 ∶ K0,�+1 → K2, as required for the inductive step. By induction, there is a separable

Lval,�-embedding �0,� ∶ K0,� → K2 extending �0. ■
claim

The remaining extension of �0,� to �1 ∶ K1 → K2 is almost the same. We construct an Lval-embedding �1 ∶ K1 → K2,
extending �0,� , by following the analogous arguments in [Kuh16, KP16], that is by Henselian Rationality and Kaplansky’s
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theory, but without the “wiggling” argument. Finally, we see that �1 is automatically separable since K1/K0,� is separated,

by Lemma 4.16, so �1 is automatically an Lval,�-embedding. �

Remark 4.20. A similar Embedding Lemma is applied in the case of separably algebraically maximal Kaplansky �elds

by Soto Moreno ([SM25]) to yield a relative quanti�er elimination.

4.2. The resplendent model theory of separably tame valued �elds. The Embedding Lemma yields model the-

oretic results, speci�cally Ax–Kochen/Ershov principles and a transfer of decidability. Moreover these results are re-

splendent over the sorts k for the residue �eld, and � for the value group, as we explain in this �nal subsection.

For any expansion L0 of Lval, an (k, �)-expansion of L0 is any expansion in which

— the residue �eld sort k is expanded to a language Lk ⊇ Lring, and

— the value group sort � is expanded to a language, L� ⊇ Loag.

We emphasise that such a language is simply L0 expanded by and only by Lk on the residue �eld sort and L� on the

value group sort. Such an expansion will be denoted L0(Lk,L�). Usually L0 is either Lval or Lval,� .

Recall from [AF24, §2] the notion of an L-fragment2, for a language L: a set F of L-formulas that contains ⊤ and ⊥,

that is closed under (�nite) conjunctions and disjunctions, and is closed under the substitution of one free variable for

another. For an L-theory T and an L-fragment F , we let TF denote the intersection of the deductive closure T⊢ with F .

A fragment is then a functor F from a subcategory L of the category of languages with inclusion to the category of

sets with functions, such that F(L) ⊆ Form(L), for each L ∈ L. If T is an L-theory where L ∈ L, we write TF = TF(L),
similarly if M is an L-structure we write ThF(M) = ThF(L)(M) = Th(M) ∩ F(L). For any language L, for any fragment F,

and for any L-structures M1, M2 with common substructure M , we write

M1 VM M2 in F(L)
to mean that F is de�ned on both L and L(M), and moreover that ThF(M1,M ) ⊆ ThF(M2,M ), where Mi,M denotes the

L(M) expansion of Mi in which we interpret each new constant symbol by its corresponding element from M .

Theorem 4.21 (Main theorem for Separably Tame Fields). Let L = Lval,�(Lk,L�) be a (k, �)-expansion of Lval,� . Let
K1, K2 ∈ ModL(STVFeq) have common L-substructure K0 which as a valued �eld is defectless, and v1K1/v0K0 is torsion-
free and K1v1/K0v0 is relatively algebraically closed.

(I) K1 VK0 K2 in Sent∃(L) if and only if
(i) k1 Vk0 k2 in Sent∃(Lk),
(ii) Γ1 VΓ0 Γ2 in Sent∃(L�), and
(iii) Imp(K1/K0) ≤ Imp(K2/K0).

(II) K1 VK0 K2 in Sent(L) if and only if
(i) k1 Vk0 k2 in Sent(Lk),
(ii) Γ1 VΓ0 Γ2 in Sent(L�), and
(iii) Imp(K1/K0) = Imp(K2/K0).

Proof. For (I), the direction⇒ is almost trivial: the interpretations of both k and �map existential formulas to existential

formulas. Moreover, if Imp(K0) = ∞, then certainly Imp(K1/K0) = Imp(K2/K0) = ∞. Otherwise, suppose that Imp(K0) =
m and let c ∈ (K0)[[p]] be a p-basis of K0. If Imp(K1/K0) ≥ n then K1 ⊧ ∃b = (b0, … , bn−1) �cb0 (1) = 1, where 0 is the multi-

index that is constantly zero. By hypothesis, K2 also models this sentence. Therefore Imp(K2/K0) ≥ n. For the converse

direction we suppose that (I:i,ii,iii) hold. Let K ∗1 ⪰ K1 be an ℵ0-saturated elementary extension, and let K ∗2 ⪰ K2 be

an |K ∗1|+-saturated elementary extension. By saturation hypotheses, there is an Lk-embedding k∗1 → k∗2 over k0 and

an L�-embedding Γ∗1 → Γ∗2 over Γ0. Then the three valued �elds K ∗1, K ∗2, with common valued sub�eld K0, satisfy the

hypotheses of ΛREP. The proof of (II) is a standard back-and-forth argument, making use of Theorem 4.19, for example

following the proof of [Kuh16, Lemma 6.1] or [KP16, Lemma 4.1]. �

In Theorem 4.23 we will deduce that the class Mod(STVFeq) satis�es the separable AKE principles sAKE

�

, for

� ∈
{≡, ≡∃, ⪯, ⪯∃}, resplendently. These principles are de�ned as follows.

De�nition 4.22. Let L be an expansion of a (k, �)-expansion Lval,�(Lk,L�) of Lval,� , and let L0 ⊆ L. Let C be a class

of L-structures and let

� ∈ {≡, ≡∃, ⪯, ⪯∃}. We say that C is an sAKE

�

-class for the triple of languages (L0,Lk,L�), if for

all K1, K2 ∈ C (where we additionally suppose K1 ⊆ K2 in case

�

is either ⪯ or ⪯∃) we have

∙ K1

� K2 in L0
if and only if

∙ k1

� k2 in Lk,

∙ Γ1

� Γ2 in L�, and

∙ Imp(K1) = Imp(K2).
In this case we say that C satis�es the separable Ax–Kochen/Ershov principle sAKE

�

for the languages L0, Lk, and L�.

2
What are here called L-fragments are also discussed in [AF25], though in that paper they are just called “fragments”.
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Theorem 4.23 (Resplendent Ax–Kochen/Ershov). Let L = Lval,�(Lk,L�) be a (k, �)-expansion of Lval,� . Let

� ∈ {≡, ≡∃
, ⪯, ⪯∃}. The class ModL(STVFeq) of all L-structures which expand separably tame valued �elds of equal characteristic is
an sAKE

�

-class for (L,Lk,L�).

Proof. Firstly, if

�

is ≡, the result follows from Theorem 4.21 (II) applied with K0 = Fp trivially valued. Secondly, if

�

is ≡∃, the result follows from Theorem 4.21 (I) applied twice, with K0 = Fp trivially valued. Thirdly, if
�

is ⪯, the result

follows from Theorem 4.21 (II) applied to K0 = K1. Finally, if

�

is ⪯∃, the result follows from Theorem 4.21 (I) applied

to K0 = K1. �

Proof of Theorem 1.5. This is the special case of Theorem 4.23 in which Lk = Lring, L� = Loag, and (thus) L = Lval,� . �

Corollary 4.24. For p ∈ P and I ∈ N ∪ {∞}.
(i) STVFeqp,I is resplendently complete relative to the value group and residue �eld.

(ii) STVFeq�,p,I is resplendently model complete relative to the value group and residue �eld.

Proof. (i) is just a particular case of the sAKE≡ principle, while (ii) is a particular case of the sAKE⪯ principle. �

Recall the sentences �p , �p,≤i, and �p,i, and the theories Fp andXp,I introduced in De�nition 2.33. ForL = Lval,�(Lk,L�),
let �k denote the “standard” interpretation Form(Lk) → Form(L) of the residue �eld in a valued �eld, the latter viewed

as an Lval-structure, by relativising each Form(Lk) to the sort k. Likewise let �� denote the standard interpretation

Form(L�) → Form(L) for the value group on the sort �.

De�nition 4.25. Let IMP (for “imperfection”) be the Lring-fragment consisting of all Boolean combinations of the Lring-

sentences �p and �p,≤i. For L = Lval,�(Lk,L�) a (k, �)-expansion of Lval,� , let AKE-IMP(L) be the L-fragment generated

by �kSent(Lk) and ��Sent(L�), and IMP. ThenAKE-IMP is the fragment thus de�ned on the full subcategory of languages

that are (k, �)-expansions of Lval,� .

Theorem 4.26. Let L = Lval,�(Lk,L�) be a (k, �)-expansion of Lval,� , and let K, L ∈ ModL(STVFeq). If ThAKE-IMP(K) =
ThAKE-IMP(L) then Th(K) = Th(L).

Proof. This is a reformulation of the sAKE≡ principle for (L,Lk,L�) from Theorem 4.23. �

The Hahn series �elds k((tΓ)), equipped with the t-adic valuation, are natural examples of tame valued �elds of equal

characteristic, with any given “suitable” pair of residue �eld k and value group Γ. By contrast, we lack such natural ex-

amples of separably tame valued �elds with positive elementary imperfection degree I > 0. Nevertheless, the following

lemma justi�es the existence of some example, for each suitable pair k and Γ).

Lemma 4.27. Let (p, I) ∈ P × (N ∪ {∞}), let k be any perfect �eld of characteristic p, and let Γ be a p-divisible ordered
abelian group. There exists K ⊧ STVFeqp,I with Kv = k and vK = Γ.

Proof. We consider the immediate extension k((tΓ))/k(tΓ), both equipped with the t-adic valuation. Let B be a transcen-

dence basis of this �eld extension, let B0 ⊆ B be a subset of cardinality I if I < ∞, or of cardinality ℵ0 if I = ∞. We

notice that B0 is a p-basis of L0 ∶= k(tΓ, B0). Let L be a separable tami�cation of L0 taken inside k((tΓ)), i.e. L is a �xed

�eld inside the separable closure of L0 of a complement of the rami�cation group inside the absolute Galois group of L0.
Then L is separably tame, with residue �eld k and value group G, and of elementary imperfection degree I. �

Theorem 4.28. Let L = Lval,�(Lk,L�) be a (k, �)-expansion of Lval,� . There is an “elimination” function � ∶ Sent(L) →
AKE-IMP(L) such that STVFeq ⊧ (' ↔ �'), for all ' ∈ Sent(L). Moreover, if L is computable then � may also be chosen to
be computable.

Proof. We adopt the terminology of [AF25], and consider the bridge

B = ((AKE-IMP(L), STVFeq), (Form(L), STVFeq), id).
First observe that the inclusion map � ∶ AKE-IMP(L) → Form(L) is an interpretation for B. Moreover B satis�es the

monotonicity property “(mon)” by Theorem 4.26. By [AF25, Proposition 2.18], therefore, the required elimination �
exists.

Suppose now that L is computable, then AKE-IMP(L) and Form(L) are computable L-fragments, and � is computable.

Moreover STVFeq is computably enumerable (even computable), in any case. Thus, again by [AF25, Proposition 2.18],

the elimination � may be chosen to be computable. �

4.3. Computability-theoretic reductions. Recall our Convention 4.2 that p̂ = p if p ∈ P, and p̂ = 1 if p = 0.
De�ne STVFeq(R, G, X ) ∶= (STVFeq ∪ �kR ∪ ��G ∪ X)AKE-IMP.

Theorem 4.29 (Fixed characteristic, uniform in imperfection degree). Let L = Lval,�(Lk,L�) be a (k, �)-expansion of
Lval,� , let p ∈ P ∪ {0}, let R be an Lk-theory of �elds of characteristic p, let G be an L�-theory of p̂-divisible ordered abelian
groups, and let X be an IMP-theory extending Xp . Suppose that L is computable. Then
(i) STVFeq(R, G, X )⊢ ≃T R⊢ ⊕T G⊢ ⊕T (F ∪ X)IMP, and
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(ii) STVFeq(R, G, X )⊢ is decidable if and only if R⊢, G⊢, and (F ∪ X)IMP are decidable.

Proof. We begin just like in the proof of Theorem 4.28. Consider the bridge

Bp = ((AKE-IMP(L), STVFeq), (Form(L), STVFeq), id).
Observe that L is computable, so AKE-IMP(L) and Form(L) are computable, � is computable, and STVFeq is computably

enumerable (even computable). The bridge Bp satis�es “surjectivity” by Lemma 4.27, and Bp satis�es “monotonicity”

by Theorem 4.26. We have veri�ed the hypotheses of [AF25, Corollary 2.23] for the arch A = (Bp , Bp , �). Applying that

result, we obtain

(I) Bp admits a computable elimination (this already follows from Theorem 4.28).

(II) STVFeq(R, G, X )⊢ ≃m STVFeq(R, G, X )AKE-IMP

It’s also rather clear that STVFeq(R, G, X )AKE-IMP ≃m (R ⊔G ⊔X)AKE-IMP, and weaking our sense of equivalence to that

of Turing equivalence we have (R ⊔ G ⊔ X)AKE-IMP ≃T R⊢ ⊕T G⊢ ⊕T (F ∪ X)IMP. Combining these with (II), we obtain

(i). Finally, (ii) follows immediately from (i). �

Corollary 4.30 (Fixed characteristic and �xed/arbitrary imperfection degree). LetL = Lval,�(Lk,L�) be a (k, �)-expansion
of Lval,� , let (p, I) ∈ {(0, 0)} ∪ (P × (N ∪ {∞})), let R be an Lk-theory of �elds of characteristic p, and let G be an L�-theory
of p̂-divisible ordered abelian groups. Suppose that L is computable. Then

(I) (i) STVFeq(R, G, Xp,I)⊢ ≃T R⊢ ⊕T G⊢, and
(ii) STVFeq(R, G, Xp,I)⊢ is decidable if and only if R⊢ and G⊢ are decidable.

(II) (i) STVFeq(R, G, Xp)⊢ ≃T R⊢ ⊕T G⊢, and
(ii) STVFeq(R, G, Xp)⊢ is decidable if and only if R⊢ and G⊢ are decidable.

Proof. Both (Fp,I)IMP and (Fp)IMP are decidable. �

This immediately implies Corollary 1.6.

Question 4.31. How may we adapt Theorem 4.29 so that it is uniform in the characteristic p?
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