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The Circuit Complexity Approach to P 
vs NP

• The P vs NP problem can be approached combinatorially through the 
study of Boolean circuit complexity
• Well-known: If L is a language in P, then Ln = L ∩ {0,1}n has Boolean 

circuits of size poly(n) 
• Therefore, to show NP ≠ P it suffices to show that there is a problem 

in NP that does not have polynomial-size circuits
• The circuit complexity approach aims to make progress by showing 

lower bounds in NP for restricted circuit classes



Success and Slowdown
• Many circuit lower bounds shown in the 1980s for interesting circuit 

models
• Constant-depth circuits [A83, FSS83, Y85, H86]
• Monotone circuits [R85]
• Constant-depth circuits with Mod p gates [R87, S87]

• However, progress ground to a halt in the 1990s and we still don’t 
know if NP has polynomial-size constant-depth circuits with Mod 6 
gates
• Is there a fundamental reason for this?



Natural Proofs

Given a circuit class C, a  natural proof against C is 
a property Q of Boolean functions (represented 
by their truth tables of size N) such that:
• Constructivity: Q in P
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean 

functions F satisfy Q
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Natural Proofs
• Given a circuit class C, a natural proof against C is a property Q of 

Boolean functions (represented by their truth tables of size N) such 
that:
• Constructivity: Q in P
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean functions F satisfy Q

• Razborov and Rudich observed that standard circuit lower bound 
proofs against restricted circuit classes yield natural proofs against C
• Main theorem [RR97]: If exponentially hard one-way functions exist, 

there are no natural proofs against SIZE(poly)



Natural Proofs: Proof of Main Theorem
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Lemma [GGM86]: If exponentially hard one-way functions exist, then there is 
pseudorandom function family in SIZE(poly) against SIZE(2O(n))

Q distinguishes random from pseudorandom, 
and is poly-time computable. Contradiction!

Pseudorandom 
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Natural Proofs and Meta-Complexity
• Natural proofs are closely related to meta-complexity
• Natural proofs distinguish easy Boolean functions from random Boolean 

functions
• Relaxation of MCSP to the average-case setting

• Thus the average-case hardness of MCSP might explain the difficulty of 
proving lower bounds (including for MCSP itself!)
• This is reminiscent of Chaitin’s incompleteness result

• Chaitin’s result says that because strings are incompressible, it is hard to prove that 
strings are incompressible

• The natural proofs barrier suggests that because MCSP is hard, it is hard to prove 
that MCSP (and other Boolean functions) are hard
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Search to Decision Reductions
• Let L be a problem in NP
• The decision problem for L is to decide, given x, whether x in L
• The search problem for L is to find, given x in L, a proof or witness that 

x in L
• Classical result: SAT is decidable in polynomial time iff the search 

problem for SAT is solvable in polynomial time
• Proof idea: Iteratively determine the witness bit by bit, using one oracle call 

to the decision problem for each bit of the witness



Search to Decision for MCSP?
• The idea of the search-to-decision reduction for SAT doesn’t seem to 

work for MCSP
• Unclear how to find a circuit for a given truth table bit by bit just by asking 

questions about MCSP

• Until recently, nothing was known about whether search reduces to 
decision for MCSP
• The search version of MCSP is closely related to learning



Learning and MCSP
• Learning model: The learner is given oracle access to a target Boolean 

function F and outputs a “good” hypothesis (i.e., small circuit) C 
approximating the target function if there is a good hypothesis 
consistent with F
• Search version of MCSP: Given a truth table of a Boolean function F, 

output a small circuit C for the truth table if one exists
• Intuitively, if there is an efficient learner, one can solve 

(approximately) the search version of MCSP, simply using the input 
truth table to answer oracle queries



Learning from Solving MCSP Efficiently
• Theorem [CIKK16]: Let C be a “reasonable” circuit class. If C-

MCSP[2n^ε] can be solved in time poly(N) (on average over the uniform 
distribution), then C-circuits of poly(n) size can be learned in time 
2polylog(n)

• Corollary [CIKK16]: The class AC0[Parity] of constant-depth unbounded 
fan-in circuits with Parity gates can be learned in quasi-polynomial 
time
• Average-case algorithms for AC0[Parity]-MCSP had been known since [RR97], 

based on lower bound techniques against AC0[Parity] 



Speedup for Learning
• Theorem [OS17]: Let C be a “reasonable” circuit class. There is ε > 0 

such that C-circuits of 2n^ε size can be learned in time 2O(n) if and only if 
C-circuits of poly(n) size can be learned in time 2polylog(n)

• The statement of this result doesn’t directly involve MCSP or meta-
complexity, but the proof crucially uses the main result of [CIKK16]
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One-Way Functions (OWFs)

x f(x)

• Efficient computability: f can be computed in 
polynomial time

• No efficient invertibility: There is no probabilistic 
poly-time procedure A that for most x, produces

     an inverse to f(x)



OWFs and Cryptography
• OWFs are the most fundamental primitive in theoretical cryptography
• Cryptographic tasks such as private-key encryption, pseudorandom 

generation, bit commitment, message authentication and digital signatures 
are all equivalent to the existence of OWFs

• OWFs are based on various well-studied complexity assumptions such 
as the hardness of the Discrete Logarithm problem, Factoring problem 
and the Shortest Vector problem in certain lattices



Should We Believe in the Existence of 
OWFs?

• The existence of OWFs implies that NP ≠ P (and even the hardness of 
NP problems on average) but the reverse implication is unknown
• Problems such as Discrete Logarithm and Factoring are known to be 

efficiently solvable by quantum algorithms
• Other standard assumptions such as hardness of lattice problems 

could be much stronger than what we require



Characterizing OWFs using Meta-
Complexity

• Liu and Pass [LP20] showed how to characterize OWFs using a natural 
average-case meta-complexity assumption
• Given a polynomial time bound t, we say that Kt is mildly hard on 

average over the uniform distribution if there is a polynomial p such 
that any probabilistic poly-time algorithm must fail to compute Kt on 
at least a 1/p(n) fraction of strings for large enough n 
• Theorem [LP20]: Fix any polynomially bounded t > 1.1 n. OWFs exist 

iff Kt is mildly hard on average over the uniform dist
• This is the first characterization of OWFs using average-case hardness 

of a natural problem



A Further Characterization of OWFs
• Theorem [IRS22]: The following are equivalent:
• One-way functions exist
• Kolmogorov complexity is hard to approximate on average over some 

“samplable” distribution, i.e., distribution sampled by some poly-time 
procedure

• Characterization based on hardness over any samplable distribution, 
while previous characterizations relied on the uniform distribution
• Works even for the uncomputable problem K!
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Uniform vs Non-Uniform Lower 
Bounds

• Major open questions in complexity theory, such as the NP vs P 
question and the PSPACE vs P question, are about uniform lower 
bounds
• Since the 1980s, approaches to these questions have focused on 

showing stronger non-uniform lower bounds, i.e., that there is a 
problem in NP or in PSPACE that does not have polynomial-size 
Boolean circuits
• These approaches have been largely unsuccessful and barriers such as the 

natural proof barrier [RR97] are known
• We are interested in new ways of exploiting the uniformity condition 

when proving lower bounds



Algorithmic Approaches to Lower 
Bounds

• While the area of complexity lower bounds has seen infrequent 
progress, research in algorithms is thriving [CKLPPS22, BNW22]
• Lower bounds are impossibility results while algorithms results are 

possibility results
• Counter-intuitive idea: Could we approach a lower bound by 

designing and analysing an algorithm for some computational task 
that we believe to be feasible?



Algorithmic Approaches to Lower 
Bounds

• Williams [W10] proposed an algorithmic approach to proving circuit 
lower bounds for NEXP (non-deterministic exponential time), and 
applied the approach [W11] to show that a new circuit lower bound 
for NEXP against ACC0 circuits
• He showed in general that if SAT can be solved on C-circuits of size m 

on n variables in time poly(m)2n-ω(log(n)) , then NEXP does not have 
polynomial-size C-circuits



Algorithmic Approaches to Lower 
Bounds

• Williams’ approach only has the potential to yield lower bounds 
against size s circuits for problems that require time more than s to 
solve, eg., lower bounds for exponential time against polynomial size
• However, in order to attack the NP vs P problem, we need to find an 

approach that applies to a problem solvable non-deterministically in 
some fixed polynomial amount of time (such as SAT) and yields 
arbitrary polynomial size lower bounds
• We give such an algorithmic approach, but for uniform rather than 

non-uniform lower bounds for PSPACE and NP



A Circuit-Based Sampling Task
• Input: A circuit C on n variables and of size s = poly(n), such that C 

accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n

• Here SAT(C) is the set of satisfying assignments of C

• The trivial algorithm that outputs a random bitstring of length n runs 
in time n and outputs each element of SAT(C) with probability 2-n

• Can we find an algorithm that is almost as efficient but beats random 
guessing for some element of SAT(C)?



A Simulation-Based Algorithm
• Input: A circuit C on n variables and of size s = poly(n), such that C 

accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n

• Here SAT(C) is the set of satisfying assignments of C

• The following simple algorithm runs in time (and space) O(sn5) and 
outputs some element of SAT(C) with probability >= n4/2n : pick n5 
strings of length n independently and uniformly at random, and 
output the lexicographically first one that satisfies C



An Algorithmic Approach

Input: A circuit C on n variables of size 
poly(n), accepting ≥ 2/3 fraction of inputs

Task: Output some fixed satisfying input y of 
C with probability ≥ n4/2n , using space O(n2)

Theorem [S23]: If the task is 
solvable, then PSPACE ≠ P

• This gives an algorithmic formulation of the PSPACE ≠ P 
problem, which is about lower bounds

• Proof of the implication uses meta-complexity



An Algorithmic Approach

Input: A circuit C on n variables of size poly(n), 
accepting ≥ 2/3 fraction of inputs, described 
by a compressed representation of size n

Task: Output some fixed satisfying input y of C 
with probability ≥ n4/2n , using time O(n2)

Theorem [S23]: If the task is 
solvable, then NP ≠ P

• This gives an algorithmic formulation of the NP ≠ P 
problem, which is about lower bounds

• Proof of the implication uses meta-complexity



Features of the Approach
• It is an approach to NP vs P that exploits the power of NP

• Several previous approaches to circuit lower bounds for circuit classes C 
yielded hard functions in P against C, and therefore are not useful in the most 
general setting

• It exploits uniformity of the lower bound
• Previous approaches applied to non-uniform lower bounds and ran up against 

the natural proofs barrier [RR97]
• It is possible that uniform lower bounds are much easier to prove than non-

uniform ones

• It is very general, applying to any circuit class C, and therefore could be 
useful in making gradual progress



Proof Template
• Reminder of circuit-based sampling task for PSPACE lower bounds
• Given: A circuit C on n variables of size poly(n), accepting ≥ 2/3 fraction of 

inputs
• Output: Some fixed satisfying input y of C with probability ≥ n4/2n 
• The algorithm should use space O(n2) 

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 
P
• The statement of the theorem does not involve meta-complexity, but 

the proof will use meta-complexity as a tool



Proof Template
• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 

P
• We assume, for the sake of contradiction, that PSPACE = P
• We consider a version of Kolmogorov complexity called probabilistic 

time-bounded Kolmogorov complexity pKpoly [GKLO22]
• Informally, the pKpoly complexity of a string x is the size of the smallest 

program that can generate x in polynomial time given access to a random 
string

• Let R be the set of strings with pKpoly complexity at least n-1
• Easy to show that R includes at least half the strings of length n



Proof Template
• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ P
• Let R be the set of strings with pKpoly complexity at least n-5
• Easy to show that R includes at least half the strings of length n and also that R 

is in PSPACE 
• Since PSPACE = P, we have that R has uniform Boolean circuits {Cn}, where 

pKpoly(Cn) is at most log(n) + O(1) by uniformity
• By the solvability of the circuit sampling task, we can show that there is a 

string y accepted by Cn such that pKpoly(y|Cn) is at most n-3log(n)
• Therefore pKpoly(y) is at most n-log(n) for large n, which contradicts the 

assumption that y ε R



Necessity of the Approach
• Theorem: Under standard circuit lower bound assumptions for 

exponential time (i.e., that DTIME(2O(n)) requires circuits of size 2Ω(n) ), 
PSPACE ≠ P if and only if the sampling task is solvable
• Thus the approach is without loss of generality if we believe in strong 

circuit lower bounds



Applications of the Approach
• The approach can be used to give new proofs of old results such as 

the space hierarchy theorem and Allender’s uniform lower bound for 
the Permanent [A99]
• It can also be used to show some new uniform lower bounds in NP 

(but still very far off from saying anything interesting about NP vs P) 



Open Problems
• Find other applications of meta-complexity to learning and 

cryptography, eg., show that the task of learning in general is NP-
complete
• Use the new algorithmic approach to lower bounds to make progress, 

eg., show that NP does not have uniform depth-2 neural networks of 
polynomial size
• Better understanding of the meta-mathematics of circuit lower 

bounds, eg., give evidence that circuit lower bounds for NP do not 
have efficient proofs in the Frege proof system
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