
Recent Advances in        
Meta-Complexity

Rahul Santhanam
(University of Oxford)



Plan of the Talk
• Metamathematics
• Learning
• Cryptography
• Complexity Lower Bounds



Plan of the Talk
• Metamathematics
• Learning
• Cryptography
• Complexity Lower Bounds



The Circuit Complexity Approach to P 
vs NP

• The P vs NP problem can be approached combinatorially through the 
study of Boolean circuit complexity
• Well-known: If L is a language in P, then Ln = L ∩ {0,1}n has Boolean 

circuits of size poly(n) 
• Therefore, to show NP ≠ P it suffices to show that there is a problem 

in NP that does not have polynomial-size circuits
• The circuit complexity approach aims to make progress by showing 

lower bounds in NP for restricted circuit classes



Success and Slowdown
• Many circuit lower bounds shown in the 1980s for interesting circuit 

models
• Constant-depth circuits [A83, FSS83, Y85, H86]
• Monotone circuits [R85]
• Constant-depth circuits with Mod p gates [R87, S87]

• However, progress ground to a halt in the 1990s and we still don’t 
know if NP has polynomial-size constant-depth circuits with Mod 6 
gates
• Is there a fundamental reason for this?



Natural Proofs

Given a circuit class C, a  natural proof against C is 
a property Q of Boolean functions (represented 
by their truth tables of size N) such that:
• Constructivity: Q in P
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean 

functions F satisfy Q



Natural Proofs

Functions 
in C

Hard 
functions

Q (in P) Natural 
property 
against C



Natural Proofs
• Given a circuit class C, a natural proof against C is a property Q of 

Boolean functions (represented by their truth tables of size N) such 
that:
• Constructivity: Q in P
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean functions F satisfy Q

• Razborov and Rudich observed that standard circuit lower bound 
proofs against restricted circuit classes yield natural proofs against C
• Main theorem [RR97]: If exponentially hard one-way functions exist, 

there are no natural proofs against SIZE(poly)



Natural Proofs: Proof of Main Theorem

Functions in 
SIZE(poly)

Hard 
functions

Q (in P) Natural 
property 
against 
SIZE(poly)

Lemma [GGM86]: If exponentially hard one-way functions exist, then there is 
pseudorandom function family in SIZE(poly) against SIZE(2O(n))

Q distinguishes random from pseudorandom, 
and is poly-time computable. Contradiction!

Pseudorandom 
functions



Natural Proofs and Meta-Complexity
• Natural proofs are closely related to meta-complexity
• Natural proofs distinguish easy Boolean functions from random Boolean 

functions
• Relaxation of MCSP to the average-case setting

• Thus the average-case hardness of MCSP might explain the difficulty of 
proving lower bounds (including for MCSP itself!)
• This is reminiscent of Chaitin’s incompleteness result

• Chaitin’s result says that because strings are incompressible, it is hard to prove that 
strings are incompressible

• The natural proofs barrier suggests that because MCSP is hard, it is hard to prove 
that MCSP (and other Boolean functions) are hard



Plan of the Talk
• Metamathematics
• Learning
• Cryptography
• Complexity Lower Bounds



Search to Decision Reductions
• Let L be a problem in NP
• The decision problem for L is to decide, given x, whether x in L
• The search problem for L is to find, given x in L, a proof or witness that 

x in L
• Classical result: SAT is decidable in polynomial time iff the search 

problem for SAT is solvable in polynomial time
• Proof idea: Iteratively determine the witness bit by bit, using one oracle call 

to the decision problem for each bit of the witness



Search to Decision for MCSP?
• The idea of the search-to-decision reduction for SAT doesn’t seem to 

work for MCSP
• Unclear how to find a circuit for a given truth table bit by bit just by asking 

questions about MCSP

• Until recently, nothing was known about whether search reduces to 
decision for MCSP
• The search version of MCSP is closely related to learning



Learning and MCSP
• Learning model: The learner is given oracle access to a target Boolean 

function F and outputs a “good” hypothesis (i.e., small circuit) C 
approximating the target function if there is a good hypothesis 
consistent with F
• Search version of MCSP: Given a truth table of a Boolean function F, 

output a small circuit C for the truth table if one exists
• Intuitively, if there is an efficient learner, one can solve 

(approximately) the search version of MCSP, simply using the input 
truth table to answer oracle queries



Learning from Solving MCSP Efficiently
• Theorem [CIKK16]: Let C be a “reasonable” circuit class. If C-

MCSP[2n^ε] can be solved in time poly(N) (on average over the uniform 
distribution), then C-circuits of poly(n) size can be learned in time 
2polylog(n)

• Corollary [CIKK16]: The class AC0[Parity] of constant-depth unbounded 
fan-in circuits with Parity gates can be learned in quasi-polynomial 
time
• Average-case algorithms for AC0[Parity]-MCSP had been known since [RR97], 

based on lower bound techniques against AC0[Parity] 



Speedup for Learning
• Theorem [OS17]: Let C be a “reasonable” circuit class. There is ε > 0 

such that C-circuits of 2n^ε size can be learned in time 2O(n) if and only if 
C-circuits of poly(n) size can be learned in time 2polylog(n)

• The statement of this result doesn’t directly involve MCSP or meta-
complexity, but the proof crucially uses the main result of [CIKK16]



Plan of the Talk
• Metamathematics
• Learning
• Cryptography
• Complexity Lower Bounds



One-Way Functions (OWFs)

x f(x)

• Efficient computability: f can be computed in 
polynomial time

• No efficient invertibility: There is no probabilistic 
poly-time procedure A that for most x, produces

     an inverse to f(x)



OWFs and Cryptography
• OWFs are the most fundamental primitive in theoretical cryptography
• Cryptographic tasks such as private-key encryption, pseudorandom 

generation, bit commitment, message authentication and digital signatures 
are all equivalent to the existence of OWFs

• OWFs are based on various well-studied complexity assumptions such 
as the hardness of the Discrete Logarithm problem, Factoring problem 
and the Shortest Vector problem in certain lattices



Should We Believe in the Existence of 
OWFs?

• The existence of OWFs implies that NP ≠ P (and even the hardness of 
NP problems on average) but the reverse implication is unknown
• Problems such as Discrete Logarithm and Factoring are known to be 

efficiently solvable by quantum algorithms
• Other standard assumptions such as hardness of lattice problems 

could be much stronger than what we require



Characterizing OWFs using Meta-
Complexity

• Liu and Pass [LP20] showed how to characterize OWFs using a natural 
average-case meta-complexity assumption
• Given a polynomial time bound t, we say that Kt is mildly hard on 

average over the uniform distribution if there is a polynomial p such 
that any probabilistic poly-time algorithm must fail to compute Kt on 
at least a 1/p(n) fraction of strings for large enough n 
• Theorem [LP20]: Fix any polynomially bounded t > 1.1 n. OWFs exist 

iff Kt is mildly hard on average over the uniform dist
• This is the first characterization of OWFs using average-case hardness 

of a natural problem



A Further Characterization of OWFs
• Theorem [IRS22]: The following are equivalent:
• One-way functions exist
• Kolmogorov complexity is hard to approximate on average over some 

“samplable” distribution, i.e., distribution sampled by some poly-time 
procedure

• Characterization based on hardness over any samplable distribution, 
while previous characterizations relied on the uniform distribution
• Works even for the uncomputable problem K!



Plan of the Talk
• Metamathematics
• Learning
• Cryptography
• Complexity Lower Bounds



Uniform vs Non-Uniform Lower 
Bounds

• Major open questions in complexity theory, such as the NP vs P 
question and the PSPACE vs P question, are about uniform lower 
bounds
• Since the 1980s, approaches to these questions have focused on 

showing stronger non-uniform lower bounds, i.e., that there is a 
problem in NP or in PSPACE that does not have polynomial-size 
Boolean circuits
• These approaches have been largely unsuccessful and barriers such as the 

natural proof barrier [RR97] are known
• We are interested in new ways of exploiting the uniformity condition 

when proving lower bounds



Algorithmic Approaches to Lower 
Bounds

• While the area of complexity lower bounds has seen infrequent 
progress, research in algorithms is thriving [CKLPPS22, BNW22]
• Lower bounds are impossibility results while algorithms results are 

possibility results
• Counter-intuitive idea: Could we approach a lower bound by 

designing and analysing an algorithm for some computational task 
that we believe to be feasible?



Algorithmic Approaches to Lower 
Bounds

• Williams [W10] proposed an algorithmic approach to proving circuit 
lower bounds for NEXP (non-deterministic exponential time), and 
applied the approach [W11] to show that a new circuit lower bound 
for NEXP against ACC0 circuits
• He showed in general that if SAT can be solved on C-circuits of size m 

on n variables in time poly(m)2n-ω(log(n)) , then NEXP does not have 
polynomial-size C-circuits



Algorithmic Approaches to Lower 
Bounds

• Williams’ approach only has the potential to yield lower bounds 
against size s circuits for problems that require time more than s to 
solve, eg., lower bounds for exponential time against polynomial size
• However, in order to attack the NP vs P problem, we need to find an 

approach that applies to a problem solvable non-deterministically in 
some fixed polynomial amount of time (such as SAT) and yields 
arbitrary polynomial size lower bounds
• We give such an algorithmic approach, but for uniform rather than 

non-uniform lower bounds for PSPACE and NP



A Circuit-Based Sampling Task
• Input: A circuit C on n variables and of size s = poly(n), such that C 

accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n

• Here SAT(C) is the set of satisfying assignments of C

• The trivial algorithm that outputs a random bitstring of length n runs 
in time n and outputs each element of SAT(C) with probability 2-n

• Can we find an algorithm that is almost as efficient but beats random 
guessing for some element of SAT(C)?



A Simulation-Based Algorithm
• Input: A circuit C on n variables and of size s = poly(n), such that C 

accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n

• Here SAT(C) is the set of satisfying assignments of C

• The following simple algorithm runs in time (and space) O(sn5) and 
outputs some element of SAT(C) with probability >= n4/2n : pick n5 
strings of length n independently and uniformly at random, and 
output the lexicographically first one that satisfies C



An Algorithmic Approach

Input: A circuit C on n variables of size 
poly(n), accepting ≥ 2/3 fraction of inputs

Task: Output some fixed satisfying input y of 
C with probability ≥ n4/2n , using space O(n2)

Theorem [S23]: If the task is 
solvable, then PSPACE ≠ P

• This gives an algorithmic formulation of the PSPACE ≠ P 
problem, which is about lower bounds

• Proof of the implication uses meta-complexity



An Algorithmic Approach

Input: A circuit C on n variables of size poly(n), 
accepting ≥ 2/3 fraction of inputs, described 
by a compressed representation of size n

Task: Output some fixed satisfying input y of C 
with probability ≥ n4/2n , using time O(n2)

Theorem [S23]: If the task is 
solvable, then NP ≠ P

• This gives an algorithmic formulation of the NP ≠ P 
problem, which is about lower bounds

• Proof of the implication uses meta-complexity



Features of the Approach
• It is an approach to NP vs P that exploits the power of NP

• Several previous approaches to circuit lower bounds for circuit classes C 
yielded hard functions in P against C, and therefore are not useful in the most 
general setting

• It exploits uniformity of the lower bound
• Previous approaches applied to non-uniform lower bounds and ran up against 

the natural proofs barrier [RR97]
• It is possible that uniform lower bounds are much easier to prove than non-

uniform ones

• It is very general, applying to any circuit class C, and therefore could be 
useful in making gradual progress



Proof Template
• Reminder of circuit-based sampling task for PSPACE lower bounds
• Given: A circuit C on n variables of size poly(n), accepting ≥ 2/3 fraction of 

inputs
• Output: Some fixed satisfying input y of C with probability ≥ n4/2n 
• The algorithm should use space O(n2) 

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 
P
• The statement of the theorem does not involve meta-complexity, but 

the proof will use meta-complexity as a tool



Proof Template
• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 

P
• We assume, for the sake of contradiction, that PSPACE = P
• We consider a version of Kolmogorov complexity called probabilistic 

time-bounded Kolmogorov complexity pKpoly [GKLO22]
• Informally, the pKpoly complexity of a string x is the size of the smallest 

program that can generate x in polynomial time given access to a random 
string

• Let R be the set of strings with pKpoly complexity at least n-1
• Easy to show that R includes at least half the strings of length n



Proof Template
• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ P
• Let R be the set of strings with pKpoly complexity at least n-5
• Easy to show that R includes at least half the strings of length n and also that R 

is in PSPACE 
• Since PSPACE = P, we have that R has uniform Boolean circuits {Cn}, where 

pKpoly(Cn) is at most log(n) + O(1) by uniformity
• By the solvability of the circuit sampling task, we can show that there is a 

string y accepted by Cn such that pKpoly(y|Cn) is at most n-3log(n)
• Therefore pKpoly(y) is at most n-log(n) for large n, which contradicts the 

assumption that y ε R



Necessity of the Approach
• Theorem: Under standard circuit lower bound assumptions for 

exponential time (i.e., that DTIME(2O(n)) requires circuits of size 2Ω(n) ), 
PSPACE ≠ P if and only if the sampling task is solvable
• Thus the approach is without loss of generality if we believe in strong 

circuit lower bounds



Applications of the Approach
• The approach can be used to give new proofs of old results such as 

the space hierarchy theorem and Allender’s uniform lower bound for 
the Permanent [A99]
• It can also be used to show some new uniform lower bounds in NP 

(but still very far off from saying anything interesting about NP vs P) 



Open Problems
• Find other applications of meta-complexity to learning and 

cryptography, eg., show that the task of learning in general is NP-
complete
• Use the new algorithmic approach to lower bounds to make progress, 

eg., show that NP does not have uniform depth-2 neural networks of 
polynomial size
• Better understanding of the meta-mathematics of circuit lower 

bounds, eg., give evidence that circuit lower bounds for NP do not 
have efficient proofs in the Frege proof system


	Recent Advances in Meta-Complexity
	Plan of the Talk
	Plan of the Talk (2)
	The Circuit Complexity Approach to P vs NP
	Success and Slowdown
	Natural Proofs
	Natural Proofs (2)
	Natural Proofs (3)
	Natural Proofs: Proof of Main Theorem
	Natural Proofs and Meta-Complexity
	Plan of the Talk (3)
	Search to Decision Reductions
	Search to Decision for MCSP?
	Learning and MCSP
	Learning from Solving MCSP Efficiently
	Speedup for Learning
	Plan of the Talk (4)
	One-Way Functions (OWFs)
	OWFs and Cryptography
	Should We Believe in the Existence of OWFs?
	Characterizing OWFs using Meta-Complexity
	A Further Characterization of OWFs
	Plan of the Talk (5)
	Uniform vs Non-Uniform Lower Bounds
	Algorithmic Approaches to Lower Bounds
	Algorithmic Approaches to Lower Bounds (2)
	Algorithmic Approaches to Lower Bounds (3)
	A Circuit-Based Sampling Task
	A Simulation-Based Algorithm
	An Algorithmic Approach
	An Algorithmic Approach (2)
	Features of the Approach
	Proof Template
	Proof Template (2)
	Proof Template (3)
	Necessity of the Approach
	Applications of the Approach
	Open Problems

