
Intro to Meta-
Complexity

Rahul Santhanam
(University of Oxford)

Complexity Theory: Goals
• Complexity theory studies the possibilities and limits of efficient

computation
• Can be thought of as “fine-grained” version of computability theory, where we are

concerned with resource requirements for computable problems

• Given a problem L of interest, we wish to design efficient algorithms for L,
and if efficient algorithms do not exist, to prove complexity lower bounds
• While many algorithmic techniques are known, our knowledge of strong

lower bound techniques is more limited
• Hence, rather than showing unconditional lower bounds on L, we are often

satisfied with showing that L is equivalent in complexity to some other
problem L’ that we believe to be hard

Complexity Theory: Main Problems
• NP vs P: Does every problem in NP (i.e., with polynomial-size solutions

that can be efficiently verified) be solved efficiently (i.e., in polynomial
time)?
• By the phenomenon of NP-completeness, this is equivalent to the

polynomial-time solvability of specific problems such as SAT, Clique, Integer
Linear Programming etc.

• PSPACE vs P: Can every problem in polynomial space be solved in
polynomial time?
• By the phenomenon of PSPACE-completeness, this is equivalent to the

polynomial-time solvability of specific problems such as validity of quantified
Boolean formulas (TQBF)

Complexity Theory: Main Problems
• EXP vs SIZE(poly): Can every problem in exponential time be solved by

polynomial size Boolean circuits?
• We know by time hierarchy theorem that there are problems in EXP that are not

in P, but showing lower bounds against polynomial size circuits seems much
harder

• If the answer is no, then by the theory of pseudo-random generators
[NW94,IW97], [every problem in randomized polynomial time can be solved in
deterministic sub-exponential time

• Why are complexity lower bounds so hard to prove?
• Various complexity-theoretic barriers to success of known techniques for proving

lower bounds, eg., the relativization barrier [BGS75] and the natural proofs
barrier [RR97]

Complexity Theory: Connections
• Logic: The area of proof complexity studies which tautologies have polynomial-

size proofs in propositional proof systems such as Resolution and Frege
• NP=coNP iff there is a propositional proof system such that all tautologies have

polynomial-size proofs

• Learning: The theory of PAC-learning gives a complexity-theoretic framework
in which to study the efficient learnability of concepts
• If NP=P, then polynomial-size programs can be learned efficiently from their input-

output behaviour

• Cryptography: Complexity-theoretic crypto reduces the security of
cryptographic protocols such as key agreement and message authentication to
the hardness of specific computational problems such as Factoring

SAT and Friends
• Problems such as SAT are fundamental in complexity theory
• SAT: Given a Boolean formula φ on n variables, is there a satisfying

assignment to φ?
• Bounded NTM Halting: Given the description <M> of a non-deterministic TM

M, an input x, and a number t in unary, does M halt on x within t steps?
• SAT and Bounded NTM Halting are NP-complete

• Such problems can be thought of as resource-bounded or finitary
versions of uncomputable problems
• SAT is a finitary version of the Non-Emptiness problem, which asks whether a

given Turing machine M accepts any inputs
• Bounded NTM Halting is a finitary version of the Halting problem

White-Box Problems
• SAT and Bounded NTM Halting are problems about computation –

given a formula or description of a machine, we are asked for
information about properties of the formula or machine: non-
emptiness, halting etc.
• Several other examples

• TQBF (given a quantified Boolean formula, is it valid) is PSPACE-complete
• #SAT (given a formula, count the number of satisfying assignments) is #P-

complete
• CVP (given a circuit C and an input x, is C(x) = 1) is P-complete

• These are all examples of white-box problems: given the description
of a computational object, answer questions about its behaviour

Black-Box Problems
• A black-box problem is the inverse of a white-box problem. Instead of

being given a computational object and asked questions about its
behaviour, you are given information about the behaviour and asked
about the computational object that produces the behaviour
• Example: Fundamental Problem of Learning, where you are given a

set of pairs (xi,bi), i = 1..n, where each xi is of length n, and each bi a
bit, as well as an integer s, and asked if there is a Boolean circuit C of
size at most s such that C(xi) = bi for each i

Black Box, White Box
• In general, white box problems are fairly well understood in terms of

their complexity relationships
• Black box problems are much more mysterious
• The complexity of black box problems is especially relevant to

applications in logic, learning and cryptography

Meta-Complexity
• Meta-complexity is the study of computational problems that are

themselves about complexity, eg., the Minimum Circuit Size Problem
(MCSP) or the problem of computing Kolmogorov complexity
• Meta-complexity as a topic: Which complexity classes do various

meta-complexity problems lie in? What complexity lower bounds can
we show for them? What reductions exist between them?
• Meta-complexity as a tool: Use meta-complexity to attack

fundamental questions in computational complexity, learning theory,
cryptography and proof complexity

MCSP (Minimum Circuit Size Problem)
• MCSP: Given the truth table of a Boolean function F, and a parameter s,

does F have Boolean circuits of size s?
• MCSP[s]: Given the truth table of a Boolean function F on log(N)

variables, does F have Boolean circuits of size s(N)?
• MCSP is an example of a black-box problem: we are given an explicit

representation of a Boolean function (i.e., its truth table), and want to
know if it has a succinct description using circuits
• By interpreting a string as the truth table of a Boolean function, we can

think of circuit size as a complexity measure of a string, and MCSP
 is a problem naturally associated with this measure

MCSP and Complexity Lower Bounds
• Showing that DTIME(2O(n)) does not have Boolean circuits of size s(n) is

equivalent to efficiently constructing NO instances of MCSP[s(log(N))]
of size N given input 1N

• In one direction, efficiently constructing NO instances gives a way of
generating the truth table of a Boolean function without circuits of size s(n) in
time 2O(n) = poly(N) (where N = 2n)
• In the other direction, if L in DTIME(2O(n)) does not have Boolean circuits of

size s(n), then we can efficiently generate the truth table of Ln in time 2O(n) =
poly(N), and this truth table is a NO instance of MCSP[s(log(N))]

The Complexity of MCSP
• MCSP is in NP

• Given the truth table y (of size N) of a Boolean function F, and a parameter s, we
guess a circuit C for F of size s, and check that y is the truth table of the function
computed by C, by running C on each input z of size log(N) and verifying that C(z)
is consistent with y

• Question: Is MCSP in P?
• Naïve algorithm incurs an exponential cost by running over all candidate circuits
• No if one-way functions exist [GGM86, RR97, KC00]

• Question: Is MCSP NP-complete?
• Recently Hirahara [H22] showed that a version called Partial-MCSP, where the

input truth table has some “don’t care” symbols, is NP-complete

Variants of MCSP for Other Circuit
Classes

• Given any circuit class C, we can define the problem C-MCSP, where
the input is the truth table of a Boolean function F, and a parameter s,
and the question is whether F has C-circuits of size s
• Intuitively, it seems that C-MCSP should be harder if C is a more

powerful class, but this is not formally the case!
• It has been known for a long while that DNF-MCSP is NP-complete

[M79], however NP-completeness of MCSP is still a major open
question
• In general, we understand C-MCSP better the weaker C is

Meta-Complexity Problems Based on
Other Complexity Measures

• Circuit size can be thought of as a complexity measure on strings, and
MCSP is the computational problem corresponding to this measure
• Similarly, we can consider other complexity measures and the

computational problems corresponding to them
• K: Kolmogorov complexity
• KS: Space-bounded Kolmogorov complexity
• Kpoly: Poly-time bounded Kolmogorov complexity

• Just as SAT is a finitary version of the uncomputable problem Non-
Emptiness, MCSP and KS and Kpoly are finitary versions of K

Inherent Compressibility
• It is clear that some strings should be much compressible than others,

eg., a string of N zeroes should be more compressible than a random
string
• Explicit redundancies in strings, such as re-occurring patterns, are

exploited in algorithms such as the Lempel-Ziv algorithm and its
variants
• But there could be redundancy that is not based on repetition
• Eg., consider the strings “3141592653” and “2718281828”

• Kolmogorov complexity yields a notion of inherent compressibility

Kolmogorov Complexity
• Let U be a fixed universal Turing machine
• For any string x in Σ*, K(x) is min {|p|: U(p, ε) = x}
• Given y in Σ*, K(x|y) is min {|p|: U(p,y) = x}

• Intuitively, K(x) is the size of the smallest program that produces x
when run on the empty string
• Examples
• K(0N) ≤ log(N) + O(1), since we can describe 0N (in a way that makes sense to a

computable de-compressor) by using log(N) bits to describe N and O(1) bits to
describe a program that outputs 0N given N
• K(πN) ≤ log(N) + O(1), where πN is the string consisting of the first N bits of π

Basic Properties
• (1) For every x in Σ*, K(x) ≤ |x| + O(1)
• Any string x can be described by itself together with a program p of constant

size that just prints x out

• (2) For each integer n, there is x of length n such that K(x) ≥ n
• Straightforward counting argument
• For any i, there are at most 2i strings of Kolmogorov complexity i (since there

are at most 2i descriptions of length i)
• So there are at most 2n-1 strings of Kolmogorov complexity < n
• By pigeonhole principle, there is a string x of length n with K(x) ≥ n

Meta-Complexity of K
• MKP: Input is a string x together with a parameter s, question is

whether K(x) ≤ s
• K: Given a string x, compute the Kt complexity of x
• MKP and K are uncomputable
• Note that the problems reduce to each other in polynomial time, hence it is

sufficient to consider one of them when analyzing complexity

Uncomputability of Kolmogorov
Complexity

• Suppose, for the sake of contradiction, that there is a TM M that computes K
• Define a TM N that accepts x iff K(x) ≥ n

• By Basic Property (2) of K complexity, N accepts at least one string for each input
length n

• Now define a sequence of strings {xn}, |xn|=n, as follows
• For each n, xn is the lexicographically first string of length n that N accepts
• Note that we can compute xn given n by simulating N on strings of length n in lex

order and outputting the first such string it accepts
• This implies that K(xn) ≤ log(n) + O(1)
• But, by definition of xn, K(xn) ≥ n for each n, which is a contradiction for large enough

n

From Computation to Proofs
• These seemingly elementary considerations about Kolmogorov

complexity point to deep issues in the foundations of mathematics!
• Recall Gödel’s First Incompleteness Theorem: No consistent

effectively axiomatizable proof system can prove all truths about the
arithmetic of natural numbers
• We can get strong incompleteness results by arguing about

Kolmogorov complexity in a similar way to how we showed
uncomputability

The Deep Intractability of Kolmogorov
Complexity

• Theorem [C74]: Let X be any effectively axiomatizable sound proof
system. There are only finitely many m for which a statement of the
form “K(x) ≥ m” that can be proved in X!
• Proof: Suppose, for the sake of contradiction, that there are infinitely

many m for which some statement “K(x) ≥ m” is provable in X. Given
m, we can computably find an x such that “K(x) ≥ m” is provable in X
by enumerating potential proofs of such statements in parallel until
we find an actual one. But this x has K(x) ≤ log(m) + O(1), and for large
enough m, this contradicts K(x) ≥ m (which is implied by the
soundness of X)

Kpoly

• Let U be a fixed time-efficient universal Turing machine, and let t be a
fixed polynomial
• Kt(x) = min{|p|: U(p, ε) = x in at most t(|x|) steps}
• We have that for each x, Kt(x) ≤ |x| + O(1), and for each n, there is a

string x of length n such that Kt(x) ≥ n
• Note that K(x) ≤ Kt(x) for each x

Meta-Complexity of Kpoly

• Let t be a fixed polynomial
• MKtP: Input is a string x together with a parameter s, question is whether Kt(x) ≤ s
• Kt: Given a string x, compute the Kt complexity of x

• MINKT: Input is a string x together with parameters s and t in unary,
question is whether Kt(x) ≤ s
• MKtP and MINKT are in NP, and Kt can be computed in poly time with an

NP oracle
• Open whether any of these problems are NP-hard, however all of them

are hard if one-way functions exist [RR97, KC00], and SZK reduces to
them all [AD17]

KS
• Let U be a fixed space-efficient universal Turing machine
• KS(x) = min{|p| + s: U(p, ε) = x using space at most s}
• We have that for each x, KS(x) ≤ |x| + log(|x|), and for each n, there is

a string x of length n such that KS(x) ≥ n
• Note that K(x) ≤ KS(x) for each x

Meta-Complexity of KS
• MKSP: Input is a string x together with a parameter s, question is

whether KS(x) ≤ s
• KS: Given a string x, compute the KS complexity of x
• Observation: MKSP and KS are in polynomial space (by doing a brute-

force search for the optimal program computing x)
• Theorem [ABKvMR06]: MKSP and KS are complete for PSPACE under

non-uniform poly-size non-adaptive reductions and probabilistic poly-
time Turing reductions
• Note that this hardness is insufficient to establish that MKSP not in LOGSPACE,

and indeed this is still an open question

Meta-Complexity as a Tool: Relevance
to Circuit Complexity

• Every NO instance (F,s) of MCSP corresponds to a circuit lower
bound, i.e., that the Boolean function F does not have circuits of size
s, and conversely all circuit lower bounds are encoded into the
problem
• In recent work [A01, HS17, GIIKKT19, CKLM19], almost all known

circuit lower bounds for explicit functions have been recovered for
MCSP using connections with pseudorandomness
• MCSP and other meta-complexity problems are also associated with

a “hardness magnification” phenomenon
• If MCSP[No(1)] does not have circuits of size N1.01, then NP ≠ P [MMW19,

OPS19]

Meta-Complexity as a Tool: Relevance
to Learning Theory

• Learning is closely related to solving the search versions of MCSP and other meta-
complexity problems
• Learning model: The learner is given oracle access to a target function and

outputs a “good” hypothesis (i.e., small circuit) for the target function if such a
hypothesis exists
• Search version of MCSP: Given a truth table, output a small circuit for the truth

table if one exists
• Intuitively, if there is an efficient learner, one can solve (approximately) the

search version of MCSP, simply using the input truth table to answer oracle
queries
• [CIKK16] show that an efficient decision procedure for MCSP yields an efficient

learner

Meta-Complexity as a Tool: Relevance
to Crypto

• Pseudo-random generators are essential to encryption and other
cryptographic tasks
• A pseudo-random generator (PRG) maps short random “seeds” to longer

“pseudo-random” strings that are computationally indistinguishable from
random strings
• The outputs of a PRG have low complexity (since they can be generated from

a short seed) while purely random strings do not (by a counting argument)
• The security of a PRG relies on not being able to distinguish low-complexity

strings from high-complexity ones

• This shows that pseudo-randomness implies the hardness of meta-
complexity, but in fact the converse is also true [LP20, ILO22]

Meta-Complexity as a Tool: Relevance
to Proof Complexity and Meta-

Mathematics
• Razborov and Rudich [RR97] identified an important natural proofs

barrier to circuit lower bounds against strong circuit classes
• They showed that known explicit lower bounds against weak circuit classes

satisfy a certain naturalness property in a formal sense
• They also showed that under standard cryptographic assumptions, there are

no natural proofs against strong circuit classes such as the class of
polynomial-size Boolean circuits

• The existence of natural proofs turns out to be equivalent to efficient
zero-error average-case algorithms for MCSP! Thus the (presumed)
intractability of MCSP is crucial to meta-mathematical barriers to
circuit lower bounds

	Intro to Meta-Complexity
	Complexity Theory: Goals
	Complexity Theory: Main Problems
	Complexity Theory: Main Problems (2)
	Complexity Theory: Connections
	SAT and Friends
	White-Box Problems
	Black-Box Problems
	Black Box, White Box
	Meta-Complexity
	MCSP (Minimum Circuit Size Problem)
	MCSP and Complexity Lower Bounds
	The Complexity of MCSP
	Variants of MCSP for Other Circuit Classes
	Meta-Complexity Problems Based on Other Complexity Measures
	Inherent Compressibility
	Kolmogorov Complexity
	Basic Properties
	Meta-Complexity of K
	Uncomputability of Kolmogorov Complexity
	From Computation to Proofs
	The Deep Intractability of Kolmogorov Complexity
	Kpoly
	Meta-Complexity of Kpoly
	KS
	Meta-Complexity of KS
	Meta-Complexity as a Tool: Relevance to Circuit Complexity
	Meta-Complexity as a Tool: Relevance to Learning Theory
	Meta-Complexity as a Tool: Relevance to Crypto
	Meta-Complexity as a Tool: Relevance to Proof Complexity and Me

