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Section 1

Basics on the Continuum problem
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Given sets X, Y
Cardinality
® |X|is the (proper) class {Y : Af: X — Y bijection};

° |X| <|Y|iff thereis f: X — Y injectioniff thereisg: Y — X
surjection;

* |X| <|Y]iff [X] <|Y|land |X]| #[Y].
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Cardinality
® |X|is the (proper) class {Y : Af: X — Y bijection};
e |X| <|Y|iff thereis f : X — Y injectioniff thereisg: Y — X
surjection;
o | X| <|Y|iff |X] <|Y|and |X]| #|Y].

Cardinal arithmetic in a nutshell
e | X|<|Y|and|Y| < |X|iff [ X] = Y] (Cantor 1887, Bernstein
1897, Dedekind 1898).
® [[0; 1]I < 1(0; 1)| and [[0; 1]] = |(0; 1)| witnessed by continuous
functions.
e f:]0;1] — (0; 1) bijection, f is not continuous.
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e |X| <l|Y|and|Y| < |X|iff [ X] = |Y| (Cantor 1887, Bernstein
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® |X|is the (proper) class {Y : Af: X — Y bijection};

° |X| <|Y|iff thereis f: X — Y injectioniff thereisg: Y — X
surjection;
o | X| <|Y|iff|X] <|Y|and |X]| #|Y].
Cardinal arithmetic in a nutshell
e |X| <|Y|]and|Y]| < |X]iff | X| = Y] (Cantor 1887, Bernstein
1897, Dedekind 1898).

* |X| <[P (X)| (Cantor 1891).
If g: X = P(X), g is not a surjection as witnessed by

Yo =1{xeX:x¢g(x)}.
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® |X|is the (proper) class {Y : Af: X — Y bijection};
e |X| <|Y|iff thereisf: X — Y injection iff thereisg: Y — X
surjection;
e |X| <|Y|iff [ X| <|Y|and |X] #|Y].
Cardinal arithmetic in a nutshell
e | X| <|Y|and|Y| < |X|iff [ X] = Y| (Cantor 1887, Bernstein
1897, Dedekind 1898).
e |X| < |P(X)]|(Cantor 1891).
e < is a well-order on cardinals (Zermelo+...~ 1904), i.e. itis a

linear order on cardinals such that for every class C # 0 there
is min{|X] : X € C}.
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Cardinality
® |X|is the (proper) class {Y : Af: X — Y bijection};

° |X| <|Y|iff thereis f: X — Y injectioniff thereisg: Y — X
surjection;

o | X| <|Y]iff |IX] <|Y]and |X]| #|Y].
Cardinal arithmetic in a nutshell

e |X| <|Y|]and|Y]| < |X]iff | X| = Y] (Cantor 1887, Bernstein
1897, Dedekind 1898).

e |X| < |P(X)]|(Cantor 1891).

® <is a well-order on cardinals (Zermelo+...~ 1904).
Cardinals

* No = IN[;

° Ny =87 =min{|Z|: 1Z] > No};

o 2% = [R| = [P (N)].
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
L4 81 = 2“0,
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
* Ny = 2%, or equivalently
e if ZC R, either|Z| = |R|or|Z] < IN|.
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
* Ny = 2%, or equivalently
e if Z C R, either |Z| = [R| or |Z| < |N].

Counterexamples to CH?

® No closed subset of R is a counterexample to CH
(Cantor 1883).
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
* Ny = 2%, or equivalently
e if ZC R, either|Z| = |R|or|Z] < IN|.

Counterexamples to CH?

® No closed subset of R is a counterexample to CH
(Cantor 1883).

® No Borel subset of R is a counterexample to CH
(Alexandroff 1916, Hausdorff 1917).
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
* Ny = 2%, or equivalently
e if ZC R, either|Z| = |R|or|Z] < IN|.

Counterexamples to CH?

® No closed subset of R is a counterexample to CH
(Cantor 1883).

® No Borel subset of R is a counterexample to CH
(Alexandroff 1916, Hausdorff 1917).

* No analytic subset of R is a counterexample to CH
(Suslin+Alexandroff 1917).
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The projective susets of R” are those subsets of R” which are ¥
(or M) for some m.

K
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A 15 ”:;ﬂ-i-/l.

R

Figure: Projective sets
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Counterexamples to CH? continued
Assume there is a proper class of Woodin cardinals. Then:

® No universally Baire subset of R is a counterexample to CH
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989 + Davis
1964).
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® No universally Baire subset of R is a counterexample to CH
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989 + Davis
1964).

* Borel sets, analytic sets, projective sets,.. . are all universally
Baire
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989).

Definition
U c R is universally Baire if f~1[U] has the Baire property in X for
any continuous f : X — R with (X, 7) compact Hausdorff.
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Counterexamples to CH? continued
Assume there is a proper class of Woodin cardinals. Then:

® No universally Baire subset of R is a counterexample to CH
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989 + Davis
1964).

* Borel sets, analytic sets, projective sets,.. . are all universally
Baire
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989).

Definition
U c R is universally Baire if f~1[U] has the Baire property in X for
any continuous f : X — R with (X, 7) compact Hausdorff.

¢ Analytic and coanalytic sets are provably universally Baire
without large cardinals.

e Games with payoff a universally Baire set are determined if
(and in a weak sense only if) there is a proper class of Woodin
cardinals.
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Universally Baire sets

Definition

Let (X, 7) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
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Universally Baire sets
Definition
Let (X, 1) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).
Universal Baireness describes the absolutely regular sets of
reals:
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Universally Baire sets
Definition
Let (X, 7) be a locally compact Polish space. A C X is universally
Baire if for all continuous f : Y — X with (Y, 0") compact Hausdorff,
f~1[A] has the Baire property in (Y, o).

Universal Baireness describes the absolutely regular sets of
reals:

Consider 2" as a closed subspace of [0; 1]. It is meager.

Now take a subset P of 2 which does not have the Baire property
in 2N,

Seen as a subset of [0; 1], P is meager, hence it has the Baire
property, but P is also the preimage under the inclusion map of 2!
inside [0; 1].

This map is continuous, and the preimage of P does not have the
Baire property in 2",

Hence P C [0; 1] is not universally Baire, even if it has the Baire
property.
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Independence of CH
CH is independent of the axioms of set theory:
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1939).
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Independence of CH
CH is independent of the axioms of set theory:

® There is a model of the axioms of MK where CH holds (Gédel
1939).

e There is a model of the axioms of MK where CH fails (Cohen
1963).

¢ In the model of the axioms of MK where CH fails produced by
Cohen, this failure can be witnessed by a ¥}-set of reals.
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Section 2

Godel’s program

10/38



GP
oe

WHAT IS CANTOR’S CONTINUUM PROBLEM?
KURT GODEL, Institute for Advanced Study

The American Matematical Monthly, 54(9), 1947
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WHAT IS CANTOR’S CONTINUUM PROBLEM?
KURT GODEL, Institute for Advanced Study

On the undecidability of CH:

Only someone who (like the intuitionist) denies that the concepts and axioms of
classical set theory have any meaning (or any well-defined meaning) could be
satisfied with such a solution, not someone who believes them to describe some
well-determined reality. For in this reality Cantor’s conjecture must be either
true or false, and its undecidability from the axioms as known today can only
mean that these axioms do not contain a complete description of this reality;
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WHAT IS CANTOR’S CONTINUUM PROBLEM?
KURT GODEL, Institute for Advanced Study

On Large Cardinals:

For first of all the axioms of set theory by no means form a system closed in
itself, but, quite on the contrary, the very concept of set'” on which they are
based suggests their extension by new axioms which assert the existence of still
further iterations of the operation “set of.” These axioms can also be formulated
as propositions asserting the existence of very great cardinal numbers or (which
is the same) of sets having these cardinal numbers. The simplest of these strong
“axioms of infinity” assert the existence of inaccessible numbers (and of num-
bers inaccessible in the stronger sense) >N . ' '
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WHAT IS CANTOR’S CONTINUUM PROBLEM?
KURT GODEL, Institute for Advanced Study

On success as a criterion to detect new axioms:

There might exist axioms so abundant in their verifiable consequences,
shedding so much light upon a whole discipline, and furnishing such powerful
methods for solving given problems (and even solving them, as far as that is
possible, in a constructivistic way) that quite irrespective of their intrinsic neces-
sity they would have to be assumed at least in the same sense as any well
established physical theory.
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Section 3

Large cardinals
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Large cardinal axioms

® Large cardinals formalize the idea that the universe of sets
is as tall as possible i.e. the well-ordering on the cardinals is
as long as possible.
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universes.
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For every proper class of directed graphs with no loops, there
are two members of the class with a homomorphism between
them.
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Large cardinal axioms

¢ Large cardinals formalize the idea that the universe of sets
is as tall as possible i.e. the well-ordering on the cardinals is
as long as possible.

e Gddel already mentioned inaccessibility.

¢ Wiles proof of Fermat’s last theorem uses Grothendieck
universes.

® The existence of arbitrarily many Grothendieck universes is
equivalent to:

there is a proper class of inaccessible cardinals.

Vopenka'’s principle

For every proper class of directed graphs with no loops, there
are two members of the class with a homomorphism between
them.

Adamek-Rosicky, Locally presentable and accessible
categories, CUP, 1994.
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Vopenka'’s principle VP
For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.
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Vopenka'’s principle VP
For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.

Fact

Assume Vopenka’s principle. Then there is a proper class of
Woodin cardinals.
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Vopenka'’s principle VP

For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.
From nLab:

The implication of VP on homotopy theory, model categories and cohomology localization are
discussed in the following articles

o Jifi Rosicky, Walter Tholen, Left-determined model categories and universal homotopy
theories Transactions of the American Mathematical Society
Vol. 355, No. 9 (Sep., 2003), pp. 3611-3623 (JSTOR).

e Carles Casacuberta, Dirk Scevenels, Jeff Smith, Implications of large-cardinal principles in
homotopical localization Advances in Mathematics
Volume 197, Issue 1, 20 October 2005, Pages 120-139

e Joan Bagaria, Carles Casacuberta, Adrian_Mathias, Jifi Rosicky Definable orthogonality
classes in accessible categories are small,

» Giulio Lo Monaco, Vopénka’s principle in «-categories, arxiv:2105.04251

JOURNALS » JEMS » VOL. 17,NO. 3

Journal of the European Mathematical Society
Volume 17, No. 3 (2015)
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Section 4

Forcing axioms

15/38



Basics GP LC FA AlgCl FormST AlgMaxST App
00000000 00 000 oe 00000 0o 000000000000 000

Forcing axioms relative to a cardinal «:
The powerset of X is “as thick as possible” for given X of size «,
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Forcing axioms relative to a cardinal «:
The powerset of X is “as thick as possible” for given X of size «,
Forcing axioms for « can be divided in two categories:
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Forcing axioms for x can be divided in two categories:

* topological maximality: strong forms of Baire’s category
theorem, generic points, MM* .
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Forcing axioms relative to a cardinal «:
The powerset of X is “as thick as possible” for given X of size «,
Forcing axioms for x can be divided in two categories:

¢ topological maximality: strong forms of Baire’s category
theorem, generic points, MM* .

e algebraic maximality: closure of £ (X) under a variety of set
theoretic operations for any fixed X of size «, algebraically
closed structures, Woodin’s axiom ().

The rest of the talk is mainly aimed at formulating precisely the
second of these two concepts.
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The powerset of X is “as thick as possible” for given X of size «,

Forcing axioms for x can be divided in two categories:

topological maximality: strong forms of Baire’s category
theorem, generic points, MM* .

algebraic maximality: closure of # (X) under a variety of set
theoretic operations for any fixed X of size «, algebraically
closed structures, Woodin’s axiom ().

MM™ and () are forcing axioms for 8y the first uncountable
cardinal.

Baire’s category theorem is a “topological” forcing axiom for
No-

Large cardinals entail “algebraic” forcing axioms for .
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Section 5

Algebraic closure and model companionship
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example
Commutative | Vx,y (x-y =y -x)
semirings Vx,y,z[(x-y)-z=x-(y-2)]
withnozero | Vx(x-1=xA1-x=Xx)
divisors Vx,y(x+y=y+x)
Vx.y.z[(x+y)+z=x+(y + 2)]
Vy(x+0=xA0+x=x) N

Vx.y.z[(x+y) 2= (x-y) + (x-2)
VX, y[x-y=0- (x=0Vvy=0)]
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example

Commutative | Vx,y (x-y =y -x)

semirings Vx,y,z[(x-y)-z=x-(y-2)]

withnozero | Vx(x-1=xA1-x=Xx)

divisors Vx,y(x+y=y+x)
Vx.y.z[(x+y)+z=x+(y + 2)]
Vy(x+0=xA0+x=x) N
Ixy.z[(x+y) z=(x-y) + (x2)]
VX, y[x-y=0-(x=0Vvy=0)

Integral

domains Vx3dy (x +y =0) Z
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example
Commutative | Vx,y (x-y =y -x)
semirings Vx,y,z[(x-y)-z=x-(y-2)]
withnozero | Vx(x-1=xA1-x=Xx)
divisors Vx,y(x+y=y+x)
Vx.y.z[(x+y)+z=x+(y + 2)]
Vy(x+0=xA0+x=x) N
Ixy.z[(x+y) z=(x-y) + (x2)]
VX, y[x-y=0-(x=0Vvy=0)
Integral
domains Vx3dy (x +y =0) Z
Fields Vx[x#0 - Ay (x-y =1)] Q
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Algebraic closure of structures for {+,-,0, 1}

Structures Axioms Example
Commutative | Vx,y (x-y =y -x)
semirings Vx,y,z[(x-y)-z=x-(y-2z)]
withnozero | Vx(x-1=xA1-x=Xx)
divisors VX, y(x+y=y+x)
Iy z[(x+y) +z=x+(y+2)]
Vy(x+0=xA0+x=x) N
Vx,y,z[(x+y)-z=(x-y)+ (x-2)]
Vx.y[x-y=0-(x=0vy=0)]
Integral
domains Vx3dy (x +y =0) Z
Fields Vx[x#0 - Ay (x-y =1)] Q
Algebraically | forall n > 1
closed fields | Vxp...x,2dy 2 x;-y' =0 C
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Existentially closed structures and model companionship

<Z’ +9"091> cC <C, +7'70’1> C <C[X],+,,O,1>

19/38



Basics GP LC FA AlgCl FormST AlgMaxST App
00000000 00 000 0o 00000 0o 000000000000 000

Existentially closed structures and model companionship

(Z,+,-,0,1) C (C,+,-,0,1) C (C[X],+,-,0,1)

(Z,+,-,0,1) %4  (C.+..0.1) <1 (C[X]+,0,1)

Ix (x2 -2 =0)? Ax (x® 4 2x + i = 0)?
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Existentially closed structures and model companionship

Z,+,-,0,1) L C.+..0.1) £ (C[X],+,-0,1)

(Z,+,-,0,1) 44 (C,+,-,0,1) <4 (C[X], +,-,0,1)
Definition

Given a vocabulary T and 7-structures MCN, M<yN if every
> ¢-formula with parameters in M and true in N is true also in M.
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Existentially closed structures and model companionship

(Z,+,-,0,1) £ (C.+,.0,1) £ (C[X],+,0,1)

Z,+,-,0,1) £4 (C,+,-,0,1) <4 (C[X],+,-,0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

e A r-formula ¢(x1,...,Xxn) is quantifier free if it is a boolean
combination of atomic formulae.
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Existentially closed structures and model companionship

* A r-formula ¢(x1,...,Xn) is if it is a boolean
combination of atomic formulae.

Example

In the vocabulary {+, -, 0, 1}, the atomic formulae are diophantine
equations and the with parameters in a
ring M define the (in the sense of algebraic

geometry) of M:

with each aZ, bgj elements of M and

pij(y1»-~~aYm,']'7X1,-~~7Xn) = 0’ qdj(z19"'7dej7x17"‘7xn) = 0
diophantine equations (of degree 1 in the y;, z,-s).
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App
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Existentially closed structures and model companionship

(Z,+,-0,1) £ (C,+..0,1) £ (C[X],+,0,1)

Z,+,-0,1) A1 (C,+,-,0,1) <1 (C[X],+,-,0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

e A r-formula ¢(x1,...,Xn) is quantifier free if it is a boolean
combination of atomic formulae.

e A r-formula ¥(xo, ..., Xn) is a X1-formula if it is of the form

Y0, s Yk (Yoo - - s Vi X0s - - - x,) with ¢(vo, ..., Vi> X0s -+ - » Xn)
quantifier free.
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Existentially closed structures and model companionship

(Z,+,-,0,1)  #4 C,+,,0,1) <4 (C[X], +,-,0,1)

Definition

Given a vocabulary T and 7-structures MCN, M<1N if every

> ;-formula with parameters in M and true in N is true also in M.
e A r-formula ¢(xo, ..., Xn) is a X1-formula if it is of the form

Ao, s Yk (V05 -+ Vi X0s - Xp) with ¢ (vo. ... Yk X05 - - - Xn)
quantifier free.

Definition

Given a t-theory S, a r-structure M is S-ec if:
¢ there is a model of S NOM,
* M=y N for any N2M which models S.
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Existentially closed structures and model companionship

(z,+,-,0,1y £ (C,+,.,0,1) £ (C[X],+,-0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<y N if every
> ¢-formula with parameters in M and true in N is true also in M.

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S N2,
* M<yN for any NIM which models S.

Example

For S the {+, -, 0, 1}-theory of integral domains the algebraically

closed fields are the S-ec models.
19/38
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Existentially closed structures and model companionship

Z,+,-,0,1) £4 (C,+,-,0,1) <4 (C[X],+,-,0,1)

Definition
Given a vocabulary T and 7-structures MCN, M<1N if every
> ;-formula with parameters in M and true in N is true also in M.

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S NOIM,
* M=<yN for any NIM which models S.

Example
For S the {+, -, 0, 1}-theory of integral domains the algebraically

closed fields are the S-ec models.
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Existentially closed structures and model companionship

Definition

Given a t-theory S, a r-structure M is S-ec if:
e there is a model of S NOM,
* M<¢N for any N2 M which models S.

Definition
Given a t-theory S, a r-theory T is the model companion of S if
TFAE for any t-structure M:

°* M is amodel of T,
e Mis S-ec.
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Existentially closed structures and model companionship

Definition

Given a r-theory S, a r-structure M is S-ec if:
e there is a model of S N2,
e M<yN for any N2M which models S.

Definition
Given a r-theory S, a r-theory T is the model companion of S if
TFAE for any t-structure M:

e Misamodelof T,

e Mis S-ec.

Example
The {+,-,0, 1}-theory of integral domains has the {+, -, 0, 1}-theory
of algebraically closed fields as its model companion.

19/38
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.

App
000
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.
Consider Group Theory
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The right vocabulary for a mathematical theory

Axioms of groups in {-, e}
vx.y,z[(x-y)-z=x-(y-2)],
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=¢e].
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The right vocabulary for a mathematical theory

Axioms of groups in {-, e}
vx,y,z[(x-y)-z=x-(y-2)].
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=¢€].

Axioms of groups in {R, e} with R a ternary relation symbol
v¥x,yA'zR(x,y, z),

vx,y,z,w, t[((R(x,y,w) A R(y,z,t)) = Ju(R(x,t,u) A R(w, z,u))],
vy[R(e.y.y) A R(y.e.y)],

Vx3y [R(x,y,e) A R(y, x, e)].
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The right vocabulary for a mathematical theory
Axioms of groups in {-, e}
vx,y,z[(x-y)-z=x-(y-2)],
Vy(e-y=ynry-e=y),
Vxdy[x-y=eAy-x=g¢].

Axioms of groups in {R, e} with R a ternary relation symbol
Vx,yA'zR(x,y, z),

vx,y,z,w, t[((R(x,y,w) A R(y,z,t)) = Ju(R(x,t,u) A R(w, z,u))],

vy[R(e.y.y) AR(y.e,y)],
VYx3dy [R(x,y,e) A R(y, x, e)].

The two axiomatizions are equivalent in the vocabulary {R, -, e},
modulo the axiom

vx,y,z(R(x,y,z) & x-y = 2)
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{e}, eventually with extra symbol C.

App
000
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{€}, eventually with extra symbol C.

Formalizing in the {€}-vocabulary the notion of ordered pair:
Kuratowski’s trick: (y, z) is coded in set theory by the set
{{y}. Ay, z}}-
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{€}, eventually with extra symbol C.
Formalizing in the {€}-vocabulary the notion of ordered pair:

Kuratowski’s trick: (y, z) is coded in set theory by the set

{y}. {y, zi}. , .
In set theory the standard e-formula expressing x = (y, z) is

MwYwwex ow=tvw=u)AVv(vetov=y)AVv(veuov=yVvv=2)]
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The right vocabulary for set theory

The vocabulary €, for set theory

e constants for 0, N,

* relation symbols R, for any lightface Aq-property
A(X15- -5 Xn),

¢ function symbols for a finite list of basic set theoretic
constructors.

App
000
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The right vocabulary for set theory

Lightface Aq-properties

®* {R e V: Risan n-ary relation},

e {fe V:fisafunction},

* {(a.bye V2:achb),

e ..

* {ay,...,any e V": (V,€) E #(ay,...,an)} for any e-formula

#(x1, ..., Xn) where quantified variables are bounded to range
in a set.
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The right vocabulary for set theory

Lightface Aq-properties

®* {R e V:Risan n-ary relation},

e {fe V:fisafunction},

* {<a,bye V2:ach),

° ..

* {ay,...,any e V": (V,€) E ¢(a1,...,an)} for any e-formula

#(x1, ..., Xn) Where quantified variables are bounded to range
inaset(e.g.yCz =V¥x(xey-xez)=VYxey(xez)).

The lightface Ag-properties are those described in the last item
above and include all those listed in some of the above items.

21/38
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The right vocabulary for set theory

Lightface Aq-properties
e {R e V:Risan n-ary relation},
e {fe V:fisafunction},
. {(a,b) eV?:.ac b},
. -
e {(ay,...,any e V": (V,€) E é(ay,...,an)} for any e-formula

#(x1, ..., Xn) where quantified variables are bounded to range

in a set.
Complicated set theoretic relations

e {(X.vye V2 X =1V,
° {<x, Y)e V2:X:SD(Y)},

® any relation which is not a A+-property

App
000
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The right vocabulary for set theory

Complicated set theoretic relations
o« {(X.vy e VEixI =1V,
° {<x, YyeV2: X = SD(Y)},

® any relation which is not a A1-property (Agp € Ay).

App
000
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The right vocabulary for set theory

Basic set theoretic operations
o ﬂjf' :{ay,...,an) + @,
o (X,Y) > XXY,
e (X, Yy {X,Y},
[ ]

* Any provably total function whose graph is a lightface
Ag-property.

App
000
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The right vocabulary for set theory
The vocabulary €a, for set theory

¢ constants for (, N,

* relation symbols R, for any lightface Aq-property
d(X1,. .., Xn),

¢ function symbols for a finite list of basic set theoretic
constructors.

Basic set theoretic operations
° nf :{at,...,an)  aj,
e (X, Yy XXY,
e (X, YY) {X,Y},
.

* Any provably total function whose graph is a lightface
Ag-property.

App
000

21/38



GP LC FA AlgClI FormST
[e]e] 000 [e]e) [ee]e]e] ] [e]e)

The right vocabulary for set theory
The vocabulary €a, for set theory

e constants for 0, N,

* relation symbols R, for any lightface Aq-property
A(X15-. .4 Xn),

e function symbols for a finite list of basic set theoretic
constructors.

Lightface Aq-properties

Kay,...,an) e V" : (V,€) = #(a1,...,an)}

for any e-formula ¢(x, ..., X,) where quantified variables are
bounded to range in a set.

Basic set theoretic operations

Any total function whose graph is a lightface Ag-property.
21/38
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Section 6

Formalization of set theory

22/38
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Notational convention: smallcase variables indicate sets,
uppercase variables indicate classes.

Universal axioms
e Extensionality: VX, Y[(X S YAYCX) o X=Y].
* Comprehension: VX (Set(X) & X e V) AVX (X C V).
* Foundation:

YF [(F is a function Addom(F) =N) — An e N F(n+1) ¢ F(n)].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Existence Axioms:
* Emptyset: (Vxx ¢ 0) A (0 € V),
¢ Infinity:
Set(N) AVx [x € N & (x is a finite Von Neumann ordinal)].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}

Basic construction principles:

® Union and Pair: VX, Y,wwe XUY & (we XvweY)],...
e Separation: YP,x[(x € V) - (PN x) € V].
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Axioms of Morse-Kelley Set Theory in €p, U {Set, V}
Strong construction principles:

 Comprehension (b): For every e, -formula y(X, )

vYAZVx[xeZ o (xe VAIx,..., xn(X = (X0, Xn) AU(X0, ..., xn, V)]

* Replacement:

VF,x[(F is afunction A (x € V) A (x C dom(F))) — (F[x] € V)].

* Powerset:
Vx[(xe V) > [Vz(zeP(X) o zCx)AP(x) e V]].

® Choice:

YF[
F is a function A ¥x (x € dom(F) — F(x) # 0)
N

3G (G is a function A dom(G) = dom(F) A ¥x (x € dom(G) — G(x) € F(x))

1 23/38
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Section 7

Algebraic maximality for set theory
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The H,s

A finite set may not be simple, for example to understand the
singleton {R} we need to know R.
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The H,s

A finite set may not be simple, for example to understand the
singleton {R} we need to know R.

Definition
A set X is hereditarily finite if it is finite and all its elements are
finite, and all the elements of its elements are finite,. ..
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The H,s

A finite set may not be simple, for example to understand the
singleton {R} we need to know R.

Definition
A set X is hereditarily finite if it is finite and all its elements are

finite, and all the elements of its elements are finite,. . .,
i.e. if letting

° UOX = X,

° Un+1 X = U(Un X),

o trcl(X) = Unen(U" X),
trcl(X) is finite.

25/38
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The H,s

Definition

A set X is hereditarily finite if it is finite and all its elements are
finite, and all the elements of its elements are finite,...,

i.e. if letting

e X=X,

° Un+1 X = U(Un X),

° trcI(X) = UneN(Un X)7
trcl(X) is finite.

Example
¢ {R} is not hereditarily finite;
¢ each n € N is hereditarily finite (recall that n ={0,...,n—1}
for all n € N);
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The H,s

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hy, is the set of all hereditarily finite sets.

App
000
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The H,s

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hy, is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hy: = Hy, is the set of all hereditarily countable sets.
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The H,s
Definition
A set X is hereditarily finite if trcl(X) is finite.
Hy, is the set of all hereditarily finite sets.
Definition
A set X is hereditarily countable if trcl(X) is countable.
ng = Hy, is the set of all hereditarily countable sets.

Remark

® {R} is not hereditarily countable;

® Any subset of N is hereditarily countable;

® Q and Z as defined in any textbook are hereditarily countable;
R and P (N) are subsets of Hy, (but not elements!);

P (N) is definable by the atomic e, -formula (x € N) in the
structure (Hx,,€n,);

similarly for R or for any Polish space.
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The H,s

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hy, is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
HNK = Hy, is the set of all hereditarily countable sets.

Definition

Given a cardinal «, a set X is hereditarily of size at most « if trcl(X)
has size at most «;

H.+ is the set of all sets which are hereditarily of size at most «.
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The H,s

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hy, is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
ng = Hy, is the set of all hereditarily countable sets.

Definition
Hy+ = Hy, is the set of all sets which are hereditarily of size at
most Ny.
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The H,s

Definition
A set X is hereditarily countable if trcl(X) is countable.
ng = Hy, is the set of all hereditarily countable sets.

Definition
Hy+ = Hy, is the set of all sets which are hereditarily of size at
most N1.

Remark
* P (N1) is definable by the atomic ea,-formula (x € 81) in
parameter 81 (the first uncountable ordinal) in the structure
(Hx,» €0)
® NS, the non-stationary ideal on N1, is ¥1-definable in
parameter 8¢ in the same structure.
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The H,s

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hy: = Hy, is the set of all hereditarily countable sets.

Definition

Given a cardinal «, a set X is hereditarily of size at most « if trcl(X)
has size at most «;

H,+ is the set of all sets which are hereditarily of size at most «.
Definition

Hy+ = Hx, is the set of all sets which are hereditarily of size at
most Ni.

HgOQHg1 QHNZ.Q”'QHKJrQ...

V= U {H.+ : k an infinite cardinal}

25/38
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Existentially closed structures for set theory

Theorem (Levy)

Let k be an infinite cardinal.
Then

(Hers€ngs A - A CP (k) <1 (V,€n,, A ACP (k)

App
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Algebraic maximality for £ (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

(HK+,€AO,A A Q‘P(K))<1<V,€A0,A cAC P(K)}

App
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Algebraic maximality for £ (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

(Hetr€ngs A - A CP(k))<1(V.€ny. A : ACP (k).

Theorem (Shoenfield, 1961)
Let V|G| be a forcing extension of V. Then

(Hxy s €n0)<1(VI[Gl, €ny)-
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Algebraic maximality for £ (N)

e UBY denotes the family of universally Baire subsets of R
existing in V.

* (modulo a Borel isomorphism) R ~ # (N) ~ 2" and UB is a
family of subsets of # (N).

® Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.
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Algebraic maximality for £ (N)

e UBY denotes the family of universally Baire subsets of R
existing in V.

e (modulo a Borel isomorphism) R ~ P (N) ~ 2" and UB is a
family of subsets of  (N).

e Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.

Theorem (Feng-Magidor-Woodin, 1992)
Let V|G| be a forcing extension of V. Then

(Hy,» €. A - A € UBVY<(V[G],€p,, A1) A e UBY).
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Algebraic maximality for £ (N)

Theorem (Levy)

Let k be an infinite cardinal.
Then

<HK+,€AO,A A QP(K))<1(V,€AO,A cAC P(K))

Theorem (Shoenfield, 1961)
Let V|G| be a forcing extension of V. Then

(Hx;» €ng)<1(V[G], €ne)-
Theorem (Feng-Magidor-Woodin, 1992)
Let V|G| be a forcing extension of V. Then

(Hy, €pg0 A - A € UBVY<(V[G],€n,. AVIE - A e UBY).
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Algebraic maximality for £ (N)

e UBY denotes the family of universally Baire subsets of R
existing in V.

* (modulo a Borel isomorphism) R ~ # (N) ~ 2" and UB is a
family of subsets of # (N).

® Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AVICl of V[G] for any forcing extension V[G] of V.
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, . Algebraic maX|maI|t¥ for P (N
® UB" denotes the family of universally Baire subsets of R

existing in V.
* (modulo a Borel isomorphism) R ~ P (N) ~ 2" and UB is a
family of subsets of # (N).

e Every univ. Baire set A of V can be naturally lifted to a univ.
Baire set AICl of V[G] for any forcing extension V[G] of V.

Theorem (Woodin, 1985+Martin-Steel, 1989+ V.-Venturi,
2020)

Assume there is a proper class of Woodin’s cardinals. Then the
theory of
(Hg,,€n A - AcUBY)

is the model companion of the theory of
(V[G],eny, AVIE - A cUBY)Y

for any forcing extension V|G| of V.

App
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(Hg,>€np, A - A e UBY)
is X 1-elementary in
(V[G],en,, AV A c UBY)

for all generic extension V|G| of V
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Algebraic maximality for # (IN)

App
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(Hg,>€np, A - A e UBY)
is X 1-elementary in
(V[G],en,, AV A c UBY)

for all generic extension V|G| of V

The theory of

(Hg,»€np, A - A cUBY)

is the model companion of the theory of
(V[G],€p,,AVIC . A e UBY)

for all generic extension V|G| of V

DA
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Stationary sets and the non-stationary ideal on N
Definition
e Cis aclub subset of Ny if sup(C) = N1 and for all 8 ¢ C there
is @ < B such that [a,8] N C is empty.
® S C N is stationary if for all C club subset of X4 SN C is
non-empty.
e NS C P (N1) is the ideal of non-stationary subsets of X (i.e.
subsets disjoint from some club).

e NS is saturated if the boolean algebra # (N1) /ns has only
partitions of size at most X;.
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Stationary sets and the non-stationary ideal on N
Definition
e Cis aclub subset of Ny if sup(C) = N1 and for all 8 ¢ C there
is @ < B such that [a,8] N C is empty.
® S C N is stationary if for all C club subset of X4 SN C is
non-empty.
e NS C P (N1) is the ideal of non-stationary subsets of X (i.e.
subsets disjoint from some club).

e NS is saturated if the boolean algebra # (N1) /ns has only
partitions of size at most X;.

Theorem
e Assume NS is saturated. Then it is precipitous.
® Assume Martin’s Maximum MM. Then NS is saturated.
® NS js precipitous is consistent with CH.
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Algebraic maximality for # (X1) part /

e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
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Algebraic maximality for # (X1) part /

* NS C P (Ny) is the ideal of non-stationary subsets of X;.

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,» €, NSVIC(V[ G, €p,, NSVICE],
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Algebraic maximality for # (X1) part /

e NS C £ (N1) is the ideal of non-stationary subsets of Nj.

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,s €, NSVYT(V[ G, €p,, NSVIE]),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,» €ny, NSY<1(V ,EAO’NSV[G])
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Algebraic maximality for £ (X1) part /
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of

V by B
(Hy,. €20, NSY)E(V(G], €n,, NS 1)),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,» €9, NSY<1(V[G], ep,, NSVIC,

Theorem (Bagaria, Woodin)
MM™ implies BMM™*+.
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Algebraic maximality for # (X1) part /

Definition
Let B be a cba. B is SSP if whenever V|G| is a forcing extension of
V by B

(Hx,» €, NSVIC(V[ G, €p,, NSVICE]),

Definition
Strong Bounded Martin’s maximum BMM™ holds if whenever
B is an SSP cba and V|G| is a forcing extension of V by B

(Hx,, €ny, NSY<1(V ,EAO’NSV[G])

Theorem (Bagaria, Woodin)
MM™ implies BMM™*+.
MM is consistent with the existence of any axiom of large

cardinals.
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Applications of BMM™*

Assume BMM™ . Then:
o 280 — No
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000000080000

App
000

31/38



AlgMaxST
000000080000

Applications of BMM™*
Assume BMM™* . Then:

o 280 — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.
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Applications of BMM™*

Assume BMM™ ™. Then:
o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.
¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not

free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.
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Applications of BMM™*

Assume BMM™ ™. Then:
o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.
¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not

free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.

® THIS IS NOT KNOWN TO FOLLOW FROM BMM™*:
There are five uncountable linear orders such that any
uncountable linear order contains an isomorphic copy of one
of them.

App
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Applications of BMM™*

Assume BMM™* . Then:

o 2No — No— NT
Todorcevi¢, Mathematical Research Letters, 9(2), 2006.

¢ Whitehead’s conjecture on free groups is false,
(i.e. there are uncountable Whitehead groups which are not
free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.

® THIS IS NOT KNOWN TO FOLLOW FROM BMM™*:
There are five uncountable linear orders such that any
uncountable linear order contains an isomorphic copy of one
of them.

e THIS IS NOT KNOWN TO FOLLOW FROM BMM*:
All automorphisms of the Calkin algebra are inner.

31/38



Basics GP LC FA AlgCl FormST AlgMaxST
00000000 00 000 0o 00000 0o 000000008000

Algebraic maximality for # (X1) part /I

 UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
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Algebraic maximality for # (X1) part /I

 UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
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Algebraic maximality for # (X1) part /I

* UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
Definition (Woodin-Schindler?)

UB-BMM™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A = A € UBYY<4(V[G],en,,NSVIE AVIEL . A c UBY)
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Algebraic maximality for # (X1) part /I

* UB" denotes the family of universally Baire subsets of R
existing in V.
e NS C £ (N1) is the ideal of non-stationary subsets of Nj.
Definition (Woodin-Schindler?)

UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBVY<1(V[G],en,,NSVIE AVIEL . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™*+.
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Algebraic maximality for # (X1) part /I

Definition (Woodin-Schindler?)
UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBYY<1(V[G],en,, NSVIC AVIE . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™.
(+)us is a natural strengthening of Woodin’s axiom ().

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then (x)ug if
and only if UB-BMM™ ™.
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Algebraic maximality for # (X1) part /I

Definition (Woodin-Schindler?)
UB-BMM™™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A : A € UBYY<1(V[G],en,, NSVIC AVIE . A c UBY)

Theorem (Woodin)
MM™ implies UB-BMM™.
(+)us is a natural strengthening of Woodin’s axiom ().

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then (x)ug if
and only if UB-BMM™ ™.
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Algebraic maximality for # (X1) part /I

Definition (Woodin-Schindler?)
UB-BMM™ ™ holds if whenever B is an SSP cba and V|G| is a
forcing extension of V by B

(Hy,»€a,-NS, A - A € UBYY<4(V[G],en,, NSVIC AVIEl - A c UBY)

Theorem (Asperd-Schindler)

Assume there is a proper class of Woodin cardinals. Then
Woodin’s axiom (x) holds if and only if whenever B is an SSP cba
and V|[G] is a forcing extension of V by B

(Hy,,€a,,NS, A = A isin e (R)-)y

is X1-elementary in

v

(V[G], €n,, NSVICL AVICL s in e (m)-0)7,
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Algebraic maximality for  (X1) part /Il

Recall that ¢ is a M>-sentence if it is of the form VX Ayg(X, y) with
#(X, y) quantifier free.
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Algebraic maximality for  (X1) part /Il

Recall that ¢ is a My-sentence if it is of the form VX Ay¢(X, y) with
#(X,y) quantifier free.

In signature ep, =CH can be formalized by the l>-sentence in
parameter & (the first uncountable ordinal/cardinal):

Vf[fis a function Adom(f) = &¢) = Ar(r €N Ar ¢ ran(f)]
—_— S~ —
Bo(f) Do(fN1) Do(rN)  Ag(rf)

Note that N1 € Hy,.
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Algebraic maximality for # (81) part /I
Recall that y is a Ny-sentence if it is of the form VX Ay¢(X, ) with
#(X, y) quantifier free.

Theorem (Woodin)
Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (%)ug (or UB-BMM*).

* For any My-sentences  for e, U {N1,NS} U {A A€ UBV}

(Hyys €00s81,NS,A - A UBY Y E y

if and only if

V1% for some forcing extension V[G] of V.

Y is true in ng

App
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Algebraic maximality for  (X1) part /Il

Theorem (Woodin)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (x)ug (or UB-BMM*™).
* For any MNy-sentences y for ea, U {N1,NS} U {A ‘A€ UBV}
(among which —~CH and a strong form of 2% = K,)

<HNQ’EAO’N1,NS,A . A (S UBV> ': (ﬂ

if and only if

VI for some forcing extension V[G] of V.

Y is true in ng

33/38
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Algebraic maximality for  (X1) part /Il

Theorem (Woodin)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:

* (x)yg (or UB-BMM*™),
® For any lNy-sentences y for ep, U {N1,NS} U {A A€ UBV}

(Hy, €, N1,NS,A: Ac UB Y Ey

if and only if

VI for some forcing extension V[G] of V.

y is true in sz
Sealing can be removed by replacing UB with P(R)N for some
nice inner model N of determinacy in the formulation of BMM***
and in the relevant spots.
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM™™).

® The theory T of the structure
M = (Hx,,€n,,81,NS,A: A e UBY)
is the model companion of the theory S of the structure

(V,en,,N1,NS,A: AeclUBY).

App
000
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM™™).

® The theory T of the structure
M = (Hx,,€n,,81,NS,A: A e UBY)
is the model companion of the theory S of the structure

(V,en,,N1,NS,A: AeclUBY).

App
000

34/38



AlgMaxST
000000000080

Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
o (%)us (or UB-BMM).

® The theory T of the structure
M = (Hx,,€n,.81,NS,A - A e UBY)
is the model companion of the theory S of the structure
(V,€nyN1,NS,A: A e UBY),

® [etting Syv3 be the boolean combination of existential
sentences which are in S, and ¥ be a lN2-sentence,
M models y if and only y + Sy 3 is consistent.
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.

TFAE:
e (+)us (or UB-BMM*™).

® For any ly-sentences y
(Hy,»€nsNS,A: AcUBY) =y

if and only if
Wy is true in HXZ[G] for some forcing extension V[G] of V.
if and only if
W + Syv3 is consistent
where S is the theory of the structure

(V,en,,N1,NS,A: AelUBY).

App
000
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Algebraic maximality for  (X1) part /Il

Theorem (V.)

Assume Vopenka’s principle, Sealing, and NS is precipitous.
TFAE:
* (x)yg (or UB-BMM*™),

® The theory T of the structure
M = (Hx,,€n,.81,NS,A - A e UBY)
is the model companion of the theory S of the structure
(V,€nyN1,NS,A - A e UBY),

® [etting Syv3 be the boolean combination of existential
sentences which are in S, and ¥ be a lN2-sentence,
M models y if and only y + Sy 7 is consistent.

N
Sealing can be removed if one replaces UBY with 2 (R)-(O"") in the formulation of BMM**++ and in the relevant spots,
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Algebraic maximality for £ (X1)

(Hx,, €y, NS, A - A c UB")
is a substructure of
(V[G], en, NSVIEL AVIEL . A c UBY)

for all generic extension V[G] of V by an SSP-forcing

O P> Er B> E

DR
35/38



AlgMaxST
00000000000@

Algebraic maximality for # (N1)

Theory degree of algebraic closure
(Hx,,€n,, NS, )
MK is a substructure of
(V[G], €n,,NSIE], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €y, NS, )
MK+ is a X 1-substructure of
forcing (V[G], €n,, NSVIE, )
axioms for all generic extension V[G] of V by an SSP-forcing
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Algebraic maximality for P (84)

Theory degree of algebraic closure
(Hx,» €y, NS, )
MK is a substructure of
(V[G], €n,,NSIE], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €y, NS, )
MK+ is a X¢-substructure of
forcing (V[G], en,,NSIE], )
axioms for all generic extension V[G] of V by an SSP-forcing
MK+ for all generic extension V[G] of V the theories of
large cardinal (V[G], €n,,NSIE], )
axioms have the same model companion theory
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Algebraic maximality for P (NX4)

Theory degree of algebraic closure
(Hx,» €y, NS, )
MK is a substructure of
(V[G], en,,NSVIC], )
for all generic extension V[G] of V by an SSP-forcing
(Hx,» €n,, NS, )
MK+ is a X¢-substructure of
forcing (V[G], en,,NSIE], )
axioms for all generic extension V[G] of V by an SSP-forcing
MK+ for all generic extension V[G] of V the theories of
large cardinal (V[G], €n,,NSIE], )
axioms have the same model companion theory
for all generic extension V[G] of V the theories of
MK+ (V[G], en,, NSVIC, )
large cardinals + | have as model companion the theory of
forcing (HV2, €n,, NSV, )
axioms
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Section 8

Appendixes
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Appendix 1: Sealing

Definition (Woodin)

Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.
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Appendix 1: Sealing

Definition (Woodin)

Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.

(A weak form of) Sealing holds in a model (C, V, €a,) of
MK+enough large cardinals if whenever V[G] is a forcing
extension of V and V[H] a forcing extension of V[G] we have that

VG VIH
(hJV[G]aﬁﬂQ} ]’Ello)<< (PJV[H]7}ﬂ<} ]9€ZXO)
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Appendix 1: Sealing

Definition (Woodin)
Given (D, W, ep,) transitive model of MK, let NV be the set

P (Hx, )L(UB)W, where L(UB)Y is the smallest transitive model of
ZF containing UBY.

(A weak form of) Sealing holds in a model (C, V, €a,) of
MK+enough large cardinals if whenever V[G] is a forcing
extension of V and V[H] a forcing extension of V[G] we have that

VG VIH
(hJV[G]aﬁﬂQ} ]’Ello)<< (PJV[H]7}ﬂ<} ]9€ZXO)

Theorem (Woodin)

Assume V models k is supercompact and there are class many
Woodin cardinals. Let V[H] be a generic extension of V where « is
countable. Then sealing holds in V[H].
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Appendix 2: Some references
A few surveys on Gddel’s program and the Continuum
problem:

e J. Bagaria, Natural axioms on set theory and the continuum
problem, CRM Preprint, 591, 2004.

® P. Koellner, On the question of absolute undecidability, in Kurt
Gobdel: essays for his centennial, Lect. Notes Log. 33, 2010.

e G. Venturi and M. Viale, What model companionship can say
about the Continuum problem, arXiv:2204.13756, 2022.

e M. Viale, Strong forcing axioms and the continuum problem, in
Séminaire Bourbaki. Volume 2022/2023. Exposés
1197-1211, 2023, (SMF).

e W. H. Woodin, The Continuum hypothesis Part I, Notices of
AMS, 48(6), 2001.

e W. H. Woodin, The Continuum hypothesis Part I, Notices of
AMS, 48(7), 2001.
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