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Turing reducibility

Let f, g : N → N.

Say that f Turing reduces to g (f ≤T g) if there is a program computing f that
uses g as an oracle / black box.

To make sense of this:

• Add an instruction called query to the programming language.

• Equip program Φ with oracle g: Φg.

• When Φg executes query(n), it evaluates to g(n).

Example: Let Φ be the following oracle machine.

Input: n

y := query(n);
y := y + 1;
return y;

Then Φg(n) = g(n) + 1 for every oracle g.
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The Turing degrees

Let f, g : N → N.

If f ≤T g, we say that:

• f is recursive in / computable from g

• g computes / knows f .

The relation f ≤T g is a quasi-order:

• f ≤T f

• (f ≤T g & g ≤T h) ⇒ f ≤T h.

Functions f and g are Turing equivalent (f ≡T g) if f ≤T g & g ≤T f .

The Turing degree of f is degT(f) = {g : g ≡T f}.

The Turing degrees are DT = {degT(f) : f ∈ NN}.
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The Turing degrees as an upper semi-lattice

Turing reducibility ≤T induces a partial order on DT:

degT(f) ≤T degT(g) ⇔ f ≤T g.

For f, g : N → N, define the join f ⊕ g by:

(f ⊕ g)(2n) = f(n)

(f ⊕ g)(2n+ 1) = g(n).

Then:

• (f0 ≡T f1 & g0 ≡T g1) ⇒ f0 ⊕ g0 ≡T f1 ⊕ g1

• f ≤T f ⊕ g & g ≤T f ⊕ g

• (f ≤T h & g ≤T h) ⇒ f ⊕ g ≤T h.
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The Turing degrees as an upper semi-lattice

Recall:

(f ⊕ g)(2n) = f(n) (f ⊕ g)(2n+ 1) = g(n).

Let

degT(f) ∨ degT(g) = degT(f ⊕ g).

Then:

• degT(f) ∨ degT(g) is well-defined

• degT(f) ∨ degT(g) is the ≤T-least upper bound of degT(f) and degT(g).

Thus (DT;≤T) is an upper semi-lattice.
I.e., a partial order where every pair of elements has a least upper bound.

Also, DT has least element 0 = degT(0) = {f : f is recursive}.
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The Turing jump

The Turing jump of f : N → N is the halting problem relative to f .

Let Φ0,Φ1,Φ2, . . . be a computable list of all oracle programs.

Let

f ′ = {e : Φf
e (e) halts}.

Then:

• f <T f
′

• f ≤T g ⇒ f ′ ≤T g
′

Therefore the Turing jump is well-defined on DT:

degT(f)
′ = degT(f

′).
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The Turing degrees are not a lattice

Exact pair theorem:

Let a0 ≤T a1 ≤T a2 ≤T · · · be a countable increasing sequence from DT.
Then there are x,y ∈ DT such that

∀d (∃n d ≤T an ⇔ d ≤T x & d ≤T y).

The x and y are called an exact pair for a0 ≤T a1 ≤T a2 ≤T · · · .

It follows that DT is not a lattice.

• Consider the sequence 0 <T 0′ <T 0′′ <T · · · .
• Let x and y be an exact pair for this sequence.

• Then x and y do not have a ≤T-greatest lower bound:

• If z ≤T x,y, then z ≤T 0(n) for some n.

• But then z ≤T 0(n) <T 0(n+1) ≤T x,y.

• So z is not the greatest lower bound.

Paul Shafer – Leeds Medvedev and Muchnik Degrees 11 May 2023 7 / 48



Embedding partial orders into the Turing degrees

DT has a rich structure.

DT has size c = 2ℵ0 and has antichains of size c.

DT has countable predecessors:
For every d ∈ DT, the initial interval [0,d] is countable (or finite).

If partial order P embeds into DT (P ↪→ DT), then P has countable predecessors.

Theorem (Sacks)
For a P of size |P | ≤ ℵ1:

P ↪→ DT ⇔ P has countable predecessors.

Thus under CH: P ↪→ DT ⇔ |P | ≤ c and P has countable predecessors.

Theorem (Groszek & Slaman)
The following is consistent:
There is P of size c that has countable predecessors but does not embed into DT.
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Ideals in the Turing degrees

An ideal in an upper semi-lattice (U,≤,∨) is a set I ⊆ U that is:

• Downward closed under ≤: a ∈ I & b ≤ a ⇒ b ∈ I

• Closed under joins: a, b ∈ I ⇒ a ∨ b ∈ I.

Theorem (Lerman)

• Every finite lattice embeds into DT as an initial segment.

• Thus the finite ideals of DT are exactly the finite lattices.

Theorem (Lachlan & Lebeuf)

• Every countable upper semi-lattice with a least element embeds into DT as an
initial segment.

• Thus the countable ideals of DT are exactly the countable upper semi-lattices
with least elements.
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The first-order theory of the Turing degrees

DT is as complicated as possible, in the following sense. Let:

• Th(DT) denote the first-order theory of DT.

• Th2(N) denote the second-order theory of N.

Th(DT) = {1st-order sentences φ in the language of p.o.’s : DT |= φ}
Th2(N) = {2nd-order sentences φ in the language of arithmetic : N |= φ}.

Theorem (Simpson)

Th(DT) ≡1 Th2(N).

This means that there is a recursive bijection between Th(DT) and Th2(N).

Determining whether a 1st-order sentence is true of DT is exactly as hard as
determining whether a 2nd-order sentence is true of N.
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Sets of functions as mass problems

The Turing degrees are about computing one function from another.

The Medvedev and Muchnik degrees are about computing one set of functions
from another.

In this context, a set A ⊆ NN is called a mass problem.

Idea:

• An A ⊆ NN represents the set of solutions to an abstract mathematical
problem.

• Solve A means find a member of A.

Intuition:

If B ⊆ A, then problem A is easier than problem B because A has more solutions.
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Some example mass problems

Note that we can compute on domains other than N, like Z, Q, N<N, etc.

Problem Mass problem

Enumerate A ⊆ N {f ∈ NN : ran f = A}

Find a path through tree T ⊆ N<N {f ∈ NN : f is a path through T}

Find an infinite homogeneous set
for f : N2 → 2

{χH ∈ 2N : H is infinite homogeneous}

Find a fixed point of continuous
F : [0, 1]2 → [0, 1]2

{(qn) ∈ (Q2)N : (qn) is a Cauchy
sequence of pairs of rationals
converging to a fixed point of F}

Find a prime ideal in countable
commutative ring R encoded over N {χI ∈ 2N : I is a prime ideal in R}

Find a representation of countable
linear order (L,≺)

{χR ∈ 2(N
2) : (N, R) ∼= (L,≺)}
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Mass problems vs. Π1
2 sentences

In reverse mathematics and the Weihrauch degrees we look at a Π1
2 sentence

∀X ∃Y φ(X,Y )

such as

“For every countable commutative ring R, there is a prime ideal I ⊆ R”

as a single object and study the complexity of producing a Y from a given X.

With reverse mathematics / the Weihrauch degrees

• {(R, I) : I is a prime ideal in countable commutative ring R}
counts as a single problem.

With the mass problems

• For each countable commutative ring R,
{I : I is a prime ideal in R} counts as its own problem.

• If R and S are two countable commutative rings, it might be harder to find a
prime ideal in R than in S.
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Reducibilities between mass problems

Recall: A ⊆ NN represents (the solutions to) a mathematical problem.

Basic idea: A is easier than B if A has more solutions: B ⊆ A.

Refined idea: A is easier than B if every solution to B computes a solution to A.

But how uniformly?

Medvedev (strong) reductions:

A ≤s B if there is an oracle program Φ such that Φ(B) ⊆ A.

Here ‘Φ(B) ⊆ A’ means Φ(f) is total and in A for all f ∈ B.
(We now write Φ(f) in place of Φf .)

Muchnik (weak) reductions:

A ≤w B if ∀f ∈ B ∃g ∈ A g ≤T f .
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The Medvedev and Muchnik degrees

A ≤s B if there is a program Φ such that Φ(B) ⊆ A
A ≤w B if ∀f ∈ B ∃g ∈ A g ≤T f

The relations A ≤s B and A ≤w B are quasi-orders. For ≤s:

• A ≤s A via the identity Φ(f) = f .

• Say A ≤s B ≤s C. Let Ψ(C) ⊆ B and Φ(B) ⊆ A. Let Θ = Φ ◦Ψ.
Then Θ(C) = Φ(Ψ(C)) ⊆ A, so A ≤s C.

The Medvedev and Muchnik degrees

• Mass problems A and B are Medvedev/Muchnik equivalent (A ≡• B)
if A ≤• B & B ≤• A.

• The Medvedev/Muchnik degree of A is deg•(A) = {B ⊆ NN : B ≡• A}.

• The Medvedev/Muchnik degrees are M• = {deg•(A) : A ⊆ NN}.
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A calculus of problems

Kolmogorov wanted an interpretation of propositional logic as a logic of
problem-solving or a calculus of problems.

Medvedev introduced his degrees to provide semantics for propositional logic.

Muchnik introduced his degrees as a non-uniform alternative.

Here truth corresponds to solvability by a Turing machine and falsehood
corresponds to impossibility.

The hope was that Ms and Mw would give semantics for intuitionistic logic.

It turns out that Ms and Mw give semantics for the logic of weak excluded
middle:

¬p or ¬¬p.
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Ms and Mw as bounded distributive lattices

Ms and Mw are bounded distributive lattices.

Moreover, the lattice operations correspond to logical operations.

0 = deg•(NN) true

1 = deg•(∅) false

A ∨ B = {f ⊕ g : f ∈ A & g ∈ B} and

A ∧ B = 0⌢A ∪ 1⌢B or

For the meet operation:

• n⌢f means think of f as an infinite string and prepend n to f .

• Then n⌢A = {n⌢f : f ∈ A}.
• In the Muchnik degrees: 0⌢A ∪ 1⌢B ≡w A ∪ B.
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Meets in the Medvedev degrees

The operation A ∧ B = 0⌢A ∪ 1⌢B gives greatest lower bounds in Ms.

Lower bound

• 0⌢A ∪ 1⌢B ≤s A via Φ(f) = 0⌢f .

• Similarly, 0⌢A ∪ 1⌢B ≤s B.

Greatest lower bound

• Suppose C ≤s A and C ≤s B.
• There are Φ, Ψ such that Φ(A) ⊆ C and Ψ(B) ⊆ C.
• Let f− denote the result of shifting f to the left: f−(n) = f(n+ 1). Let

Θ(f) =

{
Φ(f−) if f(0) = 0

Ψ(f−) if f(0) = 1.

• Then Θ(0⌢A ∪ 1⌢B) ⊆ C. So C ≤s 0⌢A ∪ 1⌢B.
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A difference between Ms and Mw

Given A ⊆ NN, let C(A) denote the Turing upward closure of A:

C(A) = {g : ∃f ∈ A f ≤T g}.

Then A ≡w C(A) for every A ⊆ NN.

Mw is a complete lattice. The join and meet of (Aα : α < κ) are computed by:∨
α<κ

Aα =
⋂
α<κ

C(Aα)
∧
α<κ

Aα =
⋃
α<κ

C(Aα).

In a sense, the Muchnik degrees are a completion of the Turing degrees.

Ms is not a complete lattice (Dyment).

• There are countable collections with no least upper bound.

• There are countable collections with no greatest lower bound.
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Join- and meet- reducibility

Let L be a lattice.

• a ∈ L is join-reducible if ∃ b, c < a (a = b ∨ c).
• a ∈ L is meet-reducible if ∃ b, c > a (a = b ∧ c).

a

b c a

b c

This a is join-reducible. This a is meet-reducible.

In both Ms and Mw:

• 0 = deg•(NN) is meet-irreducible. If A ∧ B = 0⌢A ∪ 1⌢B has a recursive
element, then either A or B has a recursive element.

• 1 = deg•(∅) is join-irreducible. If A and B are non-empty, then
A ∨ B = {f ⊕ g : f ∈ A & g ∈ B} is non-empty.
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An elementary difference between Ms and Mw

Ms and Mw also have a second-least element called 0′:

0′ = deg•(NON) where NON = {f : f is not recursive}.

0′ is second-least: if A >• NN, then A ⊆ NON, so A ≥• NON.

In Ms, the element 0′ is meet-irreducible.

In Mw, the element 0′ is meet-reducible.

Thus Ms and Mw are not elementarily equivalent because

the second-least element is meet-reducible

is expressible by a first-order sentence in the language of partial orders.
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0′ is meet-irreducible in Ms

0′ = degs(NON) where NON = {f : f is not recursive}.

Suppose that NON ≥s A ∧ B. Show that NON ≥s A or NON ≥s B.

Let Φ be such that Φ(NON) ⊆ 0⌢A ∪ 1⌢B.

Let f ∈ NON. Suppose that Φ(f) ∈ 0⌢A.

• Then Φ(f)(0) = 0.

• Let σ ⊑ f be an initial segment of f such that Φ(σ)(0) = 0.

Let Ψ be the functional Ψ(g) = Φ(σ⌢g)−. Let g ∈ NON.

• Then σ⌢g ∈ NON, so Φ(σ⌢g) ∈ 0⌢A ∪ 1⌢B.
• Also, Φ(σ⌢g)(0) = 0, so Φ(σ⌢g) ∈ 0⌢A.

• Thus Ψ(g) = Φ(σ⌢g)− ∈ A.

Thus Ψ(NON) ⊆ A, so NON ≥s A.
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0′ is meet-reducible in Mw

0′ = degw(NON) where NON = {f : f is not recursive}.

Let f ∈ NON have minimal Turing degree:
If h ≤T f , then either h ≡T f or h is recursive.

Let:

A = {f} B = {g : g ≰T f}

Then:

• A >w NON because ∃g ∈ NON f ≰T g.

• B >w NON because f ∈ NON and ∀g ∈ B g ≰T f .

However, NON ≥w A ∪ B ≡w A ∧ B. So NON ≡w A ∧ B.

Let g ∈ NON.

• If g ≤T f , then g ≡T f because f has minimal Turing degree, and f ∈ A.

• If g ≰T f , then g ∈ B.
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More on reducible / irreducible Medvedev degrees

Theorem (Dyment)

Degree a ∈ Ms is meet-reducible ⇔ a = degs(A) for an A for which there are
r.e. sets U, V ⊆ N<N such that:

i ∀f ∈ A ∃σ ∈ U ∪ V σ ⊑ f

ii {f ∈ A : ∃σ ∈ U σ ⊑ f} |s {f ∈ A : ∃σ ∈ V σ ⊑ f}.

Here, |s is Medvedev incomparability: X |s Y ⇔ X ≰s Y & Y ≰s X .

Theorem (S)

Degree a ∈ Ms is join-irreducible ⇔ a = degs(NN \ I) for a Turing ideal I.

Here, I ⊆ NN is a Turing ideal if it is:

• Downward closed under ≤T: f ∈ I & g ≤T f ⇒ g ∈ I
• Closed under Turing joins: f, g ∈ I ⇒ f ⊕ g ∈ I.
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Ms and Mw as Brouwer algebras

We have interpretations of true, false, and, and or:

0 = deg•(NN) true

1 = deg•(∅) false

A ∨ B = {f ⊕ g : f ∈ A & g ∈ B} and

A ∧ B = 0⌢A ∪ 1⌢B or

To interpret propositional logic, we also need an interpretation of implies.

A Brouwer algebra is a bounded distributive lattice such that:

∀a, b ∃ least c (a ∨ c ≥ b).

The witnessing c is written a → b.

Brouwer algebras are the duals of the Heyting algebras. They provide semantics
for propositional logics between intuitionistic logic and classical logic.
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Ms and Mw as Brouwer algebras

A Brouwer algebra is a bounded distributive lattice such that:

∀a, b ∃ least c︸︷︷︸
a→b

(a ∨ c ≥ b).

The following operations make Ms and Mw into Brouwer algebras.

In Ms : A →s B = {e⌢g : ∀f ∈ A Φe(f ⊕ g) ∈ B}

In Mw : A →w B = {g : ∀f ∈ A ∃h ∈ B h ≤T f ⊕ g}

Intuition:
• A → B is the least information one must add to A in order to know B.
• A → B represents the problem of converting solutions to A into solutions to B.
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Implication in the Medvedev degrees

In Ms, implication is A → B = {e⌢g : ∀f ∈ A Φe(f ⊕ g) ∈ B}.

A∨ (A → B) ≥s B
• Let Ψ be

Ψ(f ⊕ g) = Φg(0)(f ⊕ g−).

• If f ∈ A and e⌢g ∈ A → B, then

Ψ(f ⊕ e⌢g) = Φe(f ⊕ g) ∈ B.

• Thus Ψ(A ∨ (A → B)) ⊆ B.

• So A ∨ (A → B) ≥s B.
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Implication in the Medvedev degrees

In Ms, implication is A → B = {e⌢g : ∀f ∈ A Φe(f ⊕ g) ∈ B}.

A∨ (A → B) is least

• Suppose A ∨ X ≥s B.
• Some Φe witness the reduction: Φe(A ∨ X ) ⊆ B.
• This means that:

∀f ∈ A ∀g ∈ X Φe(f ⊕ g) ∈ B.

• Let Ψ be Ψ(g) = e⌢g.

• If g ∈ X , then Ψ(g) = e⌢g ∈ A → B. So Ψ(X ) ⊆ A → B.
So A → B ≤s X .

Could also phrase the argument as:
X ≡s e

⌢X and e⌢X ⊆ A → B, so A → B ≤s X .
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Interpreting propositional formulas in Brouwer algebras

Let B be a Brouwer algebra. A valuation is a function

ν : propositional variables → B.

Valuations extend to all propositional formulas by:

ν(φ & ψ) = ν(φ) ∨ ν(ψ)

ν(φ or ψ) = ν(φ) ∧ ν(ψ)

ν(φ → ψ) = ν(φ) → ν(ψ)

ν(¬φ) = ν(φ) → 1.

Propositional formula φ is valid in B if ν(φ) = 0 for every valuation ν.

Prop-Th(B) denotes the propositional theory given by B.

Prop-Th(B) = {φ : φ is valid in B}

Prop-Th(B) is always some logic between intuitionistic and classical logic.
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Join-irreducibility and weak excluded middle

Weak excluded middle (WEM) is the law ¬p or ¬¬p.

Fact
If B is a Brouwer algebra where 1 is join-irreducible, then B validates WEM.

Let b ∈ B.

• If b = 1, then (b→ 1) = (1 → 1) = 0.

• If b < 1, then b→ 1 = 1 because 1 is join-irreducible.
Thus (b→ 1) → 1 = (1 → 1) = 0.

• Therefore (b→ 1) ∧ ((b→ 1) → 1) = 0.

Thus if φ is any formula and ν is any valuation for B:

ν(¬φ or ¬¬φ) = (ν(φ) → 1) ∧ ((ν(φ) → 1) → 1) = 0.

So ¬φ or ¬¬φ is valid in B.
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Weak excluded middle in the logic of problem-solving

In Ms and Mw:

• 0 = deg•(NN) is the problem solvable by a computer.

• 1 = deg•(∅) is the impossible problem.

• All other problems are possible, but not solvable by computers.

• p means that p is solvable by a computer.

• ¬p means that p is impossible.

• p→ q means that solutions to p can compute solutions to q.

• p or ¬p means that p is either solvable by a computer or impossible.

• ¬p or ¬¬p means that p is either possible or impossible.

1 is join-irreducible in Ms and Mw, so they both validate WEM.
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Ms, Mw, and weak excluded middle

Here

• IPC denotes intuitionistic logic

• WEM denotes IPC plus the scheme ¬p or ¬¬p.

Theorem
• Prop-Th(Ms) = WEM. (Medvedev / Sorbi)

• Prop-Th(Mw) = WEM. (Sorbi)

We know that 1 is join-irreducible in Ms and Mw.

Thus WEM ⊆ Prop-Th(Ms) and WEM ⊆ Prop-Th(Mw).

How do we show the reverse inclusions?
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Semantics for weak excluded middle

Semantics for IPC:

IPC =
⋂{

Prop-Th(B) : B is a finite Brouwer algebra
}

Semantics for WEM (Jankov):

WEM =
⋂{

Prop-Th(B) : B is a finite Brouwer algebra

with 0 meet-irreducible and 1 join-irreducible
}

Fact:
For Brouwer algebras A and B:

A ↪→ B ⇒ Prop-Th(B) ⊆ Prop-Th(A)

So we want to embed certain finite Brouwer algebras into Ms.
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Embedding finite algebras with irreducible 0 and 1 into Ms

Theorem (Sorbi)

A finite Brouwer algebra embeds into Ms ⇔ 0 is meet-irreducible and 1 is
join-irreducible.

It follows that Prop-Th(Ms) ⊆ WEM. Thus Prop-Th(Ms) = WEM.

To prove this:

• Every finite Brouwer algebra with meet-irred. 0 and join-irred. 1 embeds into a
Brouwer algebra of the form 0⊕ F(P )⊕ 1 for a finite partial order P .

Here 0⊕ F(P )⊕ 1 is the free distributive lattice generated by P with new
bottom and top elements.

• Every finite partial order embeds into DT.

• Thus for every finite partial order P ,

0⊕ F(P )⊕ 1 ↪→ 0⊕ F(DT)⊕ 1

• So we want that 0⊕ F(DT)⊕ 1 ↪→ Ms.
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The free distributive lattice generated by a partial order

Let (P,≤) be a partial order. The elements of F(P ) are expressions∨
j∈J

∧
i∈Ij

pji

where J and the Ij are finite sets of indices and each pji is in P .

Define ∨
v∈V

∧
u∈Uv

qvu ≤
∨
j∈J

∧
i∈Ij

pji

if and only if

∀v ∈ V ∃j ∈ J ∀i ∈ Ij ∃u ∈ Uv (qvu ≤ pji )

(Then take the quotient of the equivalence relation induced by ≤.)
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0⊕ F(P )⊕ 1 is a Brouwer algebra

Let

a =
∨
v∈V

∧
u∈Uv

qvu b =
∨
j∈J

∧
i∈Ij

pji .

If a ≱ b, then a→ b is the join of meets of b missing from a:

a→ b =
∨∧

i∈Ij

pji : ∀v ∈ V
(∧
i∈Ij

pji ≰
∧

u∈Uv

qvu

)
If a ≥ b, then a→ b should be 0.

Thus 0⊕ F(P )⊕ 1 is a Brouwer algebra.
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Embedding 0⊕ F(DT)⊕ 1 into Ms

For f : N → N, let Bf be NON relativized to f :

Bf = {h : h ≰T f} bf = degs(Bf ).

Then

f ≤T g ⇔ Bg ⊆ Bf ⇔ Bf ≤s Bg

Thus the map

degT(f) 7→ bf

embeds DT into Ms as a partial order.
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Embedding 0⊕ F(DT)⊕ 1 into Ms

Recall: Bf = {h : h ≰T f} bf = degs(Bf ).

The degrees bf are join- and meet-irreducible.

Moreover: ∨
v∈V

∧
u∈Uv

bgv
u

≤s

∨
j∈J

∧
i∈Ij

bfj
i

if and only if

∀v ∈ V ∃j ∈ J ∀i ∈ Ij ∃u ∈ Uv (bgv
u
≤s bfj

i
).

Also: ∨
v∈V

∧
u∈Uv

bgv
u

→
∨
j∈J

∧
i∈Ij

bfj
i

=
∨∧

i∈Ij

bfj
i

: ∀v ∈ V
(∧
i∈Ij

bfj
i

≰s

∧
u∈Uv

bgv
u

)
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Embedding 0⊕ F(DT)⊕ 1 into Ms

Thus 0⊕ F(DT)⊕ 1 embeds into Ms as a Brouwer algebra:

0 7→ 0

∨
j∈J

∧
i∈Ij

degT(f
j
i ) 7→

∨
j∈J

∧
i∈Ij

bfj
i

1 7→ 1

This shows that Prop-Th(Ms) ⊆ WEM.

Thus Prop-Th(Ms) = WEM.

Prop-Th(Mw) = WEM is also true. (Sorbi)
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Initial intervals as semantics for propositional logic

Let B be a Brouwer algebra, and let a < b be elements of B.

Then the interval [a, b] = {x ∈ B : a ≤ x ≤ b} is also a Brouwer algebra.

Thus for every b > 0, the initial interval [0, b] is a Brouwer algebra.

It is possible to realize IPC as the logic of an initial interval of Ms and Mw.

Theorem
• ∃b ∈ Ms such that Prop-Th(Ms[0, b]) = IPC. (Skvortsova = Dyment)

• ∃b ∈ Mw such that Prop-Th(Mw[0, b]) = IPC. (Sorbi & Terwijn)

Alternate proofs of these theorems are given by Kuyper.
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Initial intervals as semantics for propositional logic

In Ms, every non-trivial initial interval yields a logic between IPC and WEM.

Theorem (Kuyper)

Let b ∈ Ms be a degree with b >s 0
′. Then

IPC ⊆ Prop-Th(Ms[0, b]) ⊆ WEM.

(The above theorem is false for Mw.)

Infinitely many different logics are obtained from initial segments of Ms.

Theorem (Sorbi & Terwijn)

There is an ascending sequence b0 <s b1 <s b2 <s · · · in Ms such that

Prop-Th(Ms[0, b0]) ⊋ Prop-Th(Ms[0, b1]) ⊋ Prop-Th(Ms[0, b2]) ⊋ · · ·
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Embedding large objects into Ms and Mw

Ms and Mw have antichains of size 2c. (Platek)

That Ms and Mw have chains of size 2c is consistent with ZFC. (Terwijn)

That Ms and Mw do not have chains of size 2c is also consistent with ZFC. (S)

In fact, Ms and Mw have chains of size κ if and only if (P(c),⊆) does. (S)

(P(c),⊇) embeds into Ms as an upper semi-lattice. (Terwijn)

But only countable Boolean algebras embed into Ms as lattices. (Terwijn)

(P(c),⊇) embeds into Mw as a lattice. (Terwijn)
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Embedding DT into Ms and Mw

DT embeds into Ms and Mw as an upper semi-lattice with 0:

degT(f) 7→ degs({f}) degT(f) 7→ degw({f})

Theorem (Medvedev / Muchnik / Dyment)

For both Ms and Mw, the range of the embedding of DT ↪→ M• is defined by the
following formula φ(x) saying that x has an immediate successor:

∃a (x <• a & ∀b (x <• b → a ≤• b)).

For deg•({f}), the witnessing a’s are:

degs
(
{e⌢g : g >T f & Φe(g) = f}

)
degw

(
{g : g >T f}

)
.
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Embedding Mw into Ms

Recall that C(A) = {g : ∃f ∈ A f ≤T g} is the upward closure of A ⊆ NN.

Theorem (Muchnik)
Mw embeds into Ms as a lattice with 0 and 1 via the following map.

degw(A) 7→ degs(C(A))

Theorem (Dyment)

The range of the embedding Mw ↪→ Ms is definable in Ms.

The formula ψ(x) defining Mw in Ms says:

For every degree a, if s ≥s x whenever s ≥s a is a singleton degree, then x ≤s a.
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The first-order theories of Ms and Mw

Ms and Mw are as complicated as possible. Let:

• Th(M•) denote the first-order theory of M•.

• Th3(N) denote the third-order theory of N.

Th(M•) = {1st-order sentences φ in the language of p.o.’s : M• |= φ}
Th3(N) = {3rd-order sentences φ in the language of arithmetic : N |= φ}.

Theorem (S; independently Lewis-Pye, Nies, Sorbi)

Th(Ms) ≡1 Th(Mw) ≡1 Th3(N).

Determining whether a 1st-order sentence is true of Ms or Mw is exactly as hard
as determining whether a 3rd-order sentence is true of N.
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Compact mass problems

Here we focus on mass problems that are closed subsets of 2N.

Mass problem A ⊆ 2N is closed if there is a tree T ⊆ 2<N such that

A = [T ] = the set of infinite paths through T .

Mass problem A ⊆ 2N is effectively closed if there is a recursive tree T ⊆ 2<N

such that A = [T ].

Closed / effectively closed mass problems yield natural sub-lattices of Ms and Mw.

M01
s,cl = {degs(A) : A ⊆ 2N is closed}

M01
w,cl = {degw(A) : A ⊆ 2N is closed}
E01
s = {degs(A) : A ⊆ 2N is effectively closed}

E01
w = {degw(A) : A ⊆ 2N is effectively closed}

Theorem (Lewis-Pye, Shore, Sorbi / Higuchi / Simpson)
These sub-lattices are not Brouwer algebras.
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The first-order theories of the closed degrees

The closed and effectively closed degrees are as complicated as possible.

Theorem (S)

Th(M01
s,cl) ≡1 Th(M01

w,cl) ≡1 Th2(N)
Th(E01

s ) ≡1 Th(N)

Furthermore, Th(E01
w ) is undecidable.

For Ms, Mw, and their closed and effectively closed substructures:

• the 3-quantifier theory in the language of lattices is undecidable

• the 4-quantifier theory in the language of partial orders is undecidable.

Theorem (Cole & Kihara)
The 2-quantifier theory of E01

s in the language of partial orders is decidable.
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Merci!

Thank you for attending my talk!
Do you have a question about it?

Further reading:
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