The Medvedev and Muchnik degrees

Paul Shafer University of Leeds p.e.shafer@leeds.ac.uk http://www1.maths.leeds.ac.uk/~matpsh/

> Logique à Paris 2023 Paris, France 11 May 2023

Turing reducibility

Let $f, g \colon \mathbb{N} \to \mathbb{N}$.

Say that f Turing reduces to g ($f \leq_T g$) if there is a program computing f that uses g as an oracle / black box.

To make sense of this:

- Add an instruction called query to the programming language.
- Equip program Φ with oracle g: Φ^g .
- When Φ^g executes query(n), it evaluates to g(n).

Example: Let Φ be the following oracle machine.

Input: n $y \coloneqq query(n);$ $y \coloneqq y + 1;$ return y;

Then $\Phi^g(n) = g(n) + 1$ for every oracle g.

The Turing degrees

Let $f, g \colon \mathbb{N} \to \mathbb{N}$.

If $f \leq_{\mathrm{T}} g$, we say that:

- f is recursive in / computable from g
- g computes / knows f.

The relation $f \leq_{\mathrm{T}} g$ is a quasi-order:

- $f \leq_{\mathrm{T}} f$
- $(f \leq_{\mathrm{T}} g \& g \leq_{\mathrm{T}} h) \Rightarrow f \leq_{\mathrm{T}} h.$

Functions f and g are **Turing equivalent** $(f \equiv_T g)$ if $f \leq_T g \& g \leq_T f$.

The Turing degree of f is $\deg_{\mathrm{T}}(f) = \{g : g \equiv_{\mathrm{T}} f\}.$

The Turing degrees are $\mathcal{D}_{\mathrm{T}} = \{ \deg_{\mathrm{T}}(f) : f \in \mathbb{N}^{\mathbb{N}} \}.$

The Turing degrees as an upper semi-lattice

Turing reducibility \leq_T induces a partial order on \mathcal{D}_T :

$$\deg_{\mathrm{T}}(f) \leq_{\mathrm{T}} \deg_{\mathrm{T}}(g) \quad \Leftrightarrow \quad f \leq_{\mathrm{T}} g.$$

For $f, g \colon \mathbb{N} \to \mathbb{N}$, define the join $f \oplus g$ by:

$$(f \oplus g)(2n) = f(n)$$

(f \oplus g)(2n+1) = g(n).

Then:

•
$$(f_0 \equiv_{\mathrm{T}} f_1 \& g_0 \equiv_{\mathrm{T}} g_1) \Rightarrow f_0 \oplus g_0 \equiv_{\mathrm{T}} f_1 \oplus g_1$$

•
$$f \leq_{\mathrm{T}} f \oplus g$$
 & $g \leq_{\mathrm{T}} f \oplus g$

•
$$(f \leq_{\mathrm{T}} h \& g \leq_{\mathrm{T}} h) \Rightarrow f \oplus g \leq_{\mathrm{T}} h.$$

The Turing degrees as an upper semi-lattice

Recall:

$$(f \oplus g)(2n) = f(n)$$
 $(f \oplus g)(2n+1) = g(n).$

Let

$$\deg_{\mathrm{T}}(f) \vee \deg_{\mathrm{T}}(g) \; = \; \deg_{\mathrm{T}}(f \oplus g).$$

Then:

- $\deg_{\mathrm{T}}(f) \lor \deg_{\mathrm{T}}(g)$ is well-defined
- $\deg_{\mathrm{T}}(f) \lor \deg_{\mathrm{T}}(g)$ is the \leq_{T} -least upper bound of $\deg_{\mathrm{T}}(f)$ and $\deg_{\mathrm{T}}(g)$.

Thus $(\mathcal{D}_T; \leq_T)$ is an **upper semi-lattice**. I.e., a partial order where every pair of elements has a least upper bound.

Also, \mathcal{D}_{T} has least element $\mathbf{0} = \deg_{T}(0) = \{f : f \text{ is recursive}\}.$

The Turing jump

The Turing jump of $f \colon \mathbb{N} \to \mathbb{N}$ is the halting problem relative to f.

Let $\Phi_0, \Phi_1, \Phi_2, \ldots$ be a computable list of all oracle programs.

Let

$$f' = \{e : \Phi_e^f(e) \text{ halts}\}.$$

Then:

- $f <_{\mathrm{T}} f'$
- $f \leq_{\mathrm{T}} g \Rightarrow f' \leq_{\mathrm{T}} g'$

Therefore the Turing jump is well-defined on \mathcal{D}_{T} :

$$\deg_{\mathrm{T}}(f)' = \deg_{\mathrm{T}}(f').$$

The Turing degrees are not a lattice

Exact pair theorem:

Let $a_0 \leq_{\mathrm{T}} a_1 \leq_{\mathrm{T}} a_2 \leq_{\mathrm{T}} \cdots$ be a countable increasing sequence from \mathcal{D}_{T} . Then there are $x, y \in \mathcal{D}_{\mathrm{T}}$ such that

$$\forall \boldsymbol{d} \ (\exists n \ \boldsymbol{d} \leq_{\mathrm{T}} \boldsymbol{a}_n \ \Leftrightarrow \ \boldsymbol{d} \leq_{\mathrm{T}} \boldsymbol{x} \ \& \ \boldsymbol{d} \leq_{\mathrm{T}} \boldsymbol{y}).$$

The \boldsymbol{x} and \boldsymbol{y} are called an exact pair for $\boldsymbol{a}_0 \leq_{\mathrm{T}} \boldsymbol{a}_1 \leq_{\mathrm{T}} \boldsymbol{a}_2 \leq_{\mathrm{T}} \cdots$.

It follows that \mathcal{D}_{T} is **not** a lattice.

- Consider the sequence $\mathbf{0} <_{\mathrm{T}} \mathbf{0}' <_{\mathrm{T}} \mathbf{0}'' <_{\mathrm{T}} \cdots$
- Let x and y be an exact pair for this sequence.
- Then x and y do not have a \leq_{T} -greatest lower bound:
 - If $\boldsymbol{z} \leq_{\mathrm{T}} \boldsymbol{x}, \boldsymbol{y}$, then $\boldsymbol{z} \leq_{\mathrm{T}} \boldsymbol{0}^{(n)}$ for some n.
 - But then $\boldsymbol{z} \leq_{\mathrm{T}} \boldsymbol{0}^{(n)} <_{\mathrm{T}} \boldsymbol{0}^{(n+1)} \leq_{\mathrm{T}} \boldsymbol{x}, \boldsymbol{y}.$
 - So z is not the greatest lower bound.

Embedding partial orders into the Turing degrees

 $\mathcal{D}_{\rm T}$ has a rich structure.

 \mathcal{D}_T has size $\mathfrak{c}=2^{\aleph_0}$ and has antichains of size $\mathfrak{c}.$

 \mathcal{D}_{T} has countable predecessors: For every $d \in \mathcal{D}_{\mathrm{T}}$, the initial interval [0, d] is countable (or finite).

If partial order P embeds into \mathcal{D}_{T} ($P \hookrightarrow \mathcal{D}_{T}$), then P has countable predecessors.

 $\begin{array}{ll} \textbf{Theorem (Sacks)}\\ \text{For a }P \text{ of size } |P| \leq \aleph_1 \text{:}\\ P \hookrightarrow \mathcal{D}_{\mathrm{T}} & \Leftrightarrow & P \text{ has countable predecessors.} \end{array}$ $\begin{array}{ll} \text{Thus under CH:} & P \hookrightarrow \mathcal{D}_{\mathrm{T}} & \Leftrightarrow & |P| \leq \mathfrak{c} \text{ and } P \text{ has countable predecessors.} \end{array}$

Theorem (Groszek & Slaman)

The following is consistent: There is P of size c that has countable predecessors but does **not** embed into \mathcal{D}_T .

Paul Shafer – Leeds

Ideals in the Turing degrees

An ideal in an upper semi-lattice (U, \leq, \vee) is a set $I \subseteq U$ that is:

- Downward closed under $\leq:$ $a \in I \& b \leq a \Rightarrow b \in I$
- Closed under joins: $a, b \in I \Rightarrow a \lor b \in I.$

Theorem (Lerman)

- Every finite lattice embeds into \mathcal{D}_{T} as an initial segment.
- Thus the finite ideals of \mathcal{D}_{T} are exactly the finite lattices.

Theorem (Lachlan & Lebeuf)

- Every countable upper semi-lattice with a least element embeds into $\mathcal{D}_{\rm T}$ as an initial segment.
- Thus the countable ideals of $\mathcal{D}_{\rm T}$ are exactly the countable upper semi-lattices with least elements.

The first-order theory of the Turing degrees

 $\mathcal{D}_{\rm T}$ is as complicated as possible, in the following sense. Let:

- $Th(\mathcal{D}_T)$ denote the first-order theory of \mathcal{D}_T .
- $\mathbf{Th}_2(\mathbb{N})$ denote the second-order theory of \mathbb{N} .

$$\begin{split} \mathrm{Th}(\mathcal{D}_{\mathrm{T}}) &= \{ 1^{\mathrm{st}}\text{-order sentences } \varphi \text{ in the language of p.o.'s } : \ \mathcal{D}_{\mathrm{T}} \models \varphi \} \\ \mathrm{Th}_{2}(\mathbb{N}) &= \{ 2^{\mathrm{nd}}\text{-order sentences } \varphi \text{ in the language of arithmetic } : \ \mathbb{N} \models \varphi \}. \end{split}$$

Theorem (Simpson)

$$\operatorname{Th}(\mathcal{D}_{\mathrm{T}}) \equiv_1 \operatorname{Th}_2(\mathbb{N}).$$

This means that there is a recursive bijection between $\operatorname{Th}(\mathcal{D}_T)$ and $\operatorname{Th}_2(\mathbb{N})$.

Determining whether a 1^{st} -order sentence is true of \mathcal{D}_{T} is exactly as hard as determining whether a 2^{nd} -order sentence is true of \mathbb{N} .

Sets of functions as mass problems

The Turing degrees are about computing one function from another.

The Medvedev and Muchnik degrees are about **computing one set of functions** from another.

In this context, a set $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$ is called a mass problem.

Idea:

- An $\mathcal{A}\subseteq\mathbb{N}^{\mathbb{N}}$ represents the set of solutions to an abstract mathematical problem.
- Solve \mathcal{A} means find a member of \mathcal{A} .

Intuition:

If $\mathcal{B} \subseteq \mathcal{A}$, then problem \mathcal{A} is easier than problem \mathcal{B} because \mathcal{A} has more solutions.

Some example mass problems

Note that we can compute on domains other than $\mathbb N,$ like $\mathbb Z,$ $\mathbb Q,$ $\mathbb N^{<\mathbb N},$ etc.

Problem	Mass problem
Enumerate $A \subseteq \mathbb{N}$	$\{f\in \mathbb{N}^{\mathbb{N}}: \operatorname{ran} f=A\}$
Find a path through tree $T\subseteq \mathbb{N}^{<\mathbb{N}}$	$\{f\in\mathbb{N}^{\mathbb{N}}:f ext{ is a path through }T\}$
Find an infinite homogeneous set for $f\colon \mathbb{N}^2\to 2$	$\{\chi_H \in 2^{\mathbb{N}} : H \text{ is infinite homogeneous}\}$
Find a fixed point of continuous $F \colon [0,1]^2 \to [0,1]^2$	$ \{ (q_n) \in (\mathbb{Q}^2)^{\mathbb{N}} : (q_n) \text{ is a Cauchy} $ sequence of pairs of rationals converging to a fixed point of $F \} $
Find a prime ideal in countable commutative ring R encoded over $\mathbb N$	$\{\chi_I \in 2^{\mathbb{N}} : I \text{ is a prime ideal in } R\}$
Find a representation of countable linear order (L,\prec)	$\{\chi_R \in 2^{(\mathbb{N}^2)} : (\mathbb{N}, R) \cong (L, \prec)\}$

Mass problems vs. Π_2^1 sentences

In reverse mathematics and the Weihrauch degrees we look at a Π^1_2 sentence $\forall X \; \exists Y \; \varphi(X,Y)$

such as

"For every countable commutative ring R, there is a prime ideal $I \subseteq R$ " as a single object and study the complexity of producing a Y from a given X.

With reverse mathematics / the Weihrauch degrees

• {(*R*, *I*) : *I* is a prime ideal in countable commutative ring *R*} counts as a single problem.

With the mass problems

- For each countable commutative ring R, $\{I : I \text{ is a prime ideal in } R\}$ counts as its own problem.
- If R and S are two countable commutative rings, it might be harder to find a prime ideal in R than in S.

Reducibilities between mass problems

Recall: $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$ represents (the solutions to) a mathematical problem.

Basic idea: \mathcal{A} is easier than \mathcal{B} if \mathcal{A} has more solutions: $\mathcal{B} \subseteq \mathcal{A}$.

Refined idea: \mathcal{A} is easier than \mathcal{B} if every solution to \mathcal{B} computes a solution to \mathcal{A} .

But how uniformly?

Medvedev (strong) reductions:

 $\mathcal{A} \leq_{s} \mathcal{B}$ if there is an oracle program Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.

Here ' $\Phi(\mathcal{B}) \subseteq \mathcal{A}$ ' means $\Phi(f)$ is total and in \mathcal{A} for all $f \in \mathcal{B}$. (We now write $\Phi(f)$ in place of Φ^f .)

Muchnik (weak) reductions:

 $\mathcal{A} \leq_{\mathrm{w}} \mathcal{B} \quad \text{ if } \quad \forall f \in \mathcal{B} \ \exists g \in \mathcal{A} \ g \leq_{\mathrm{T}} f.$

The Medvedev and Muchnik degrees

 $\begin{array}{ll} \mathcal{A} \leq_{\mathrm{s}} \mathcal{B} & \quad \text{if} & \quad \text{there is a program } \Phi \text{ such that } \Phi(\mathcal{B}) \subseteq \mathcal{A} \\ \mathcal{A} \leq_{\mathrm{w}} \mathcal{B} & \quad \text{if} & \quad \forall f \in \mathcal{B} \ \exists g \in \mathcal{A} \ g \leq_{\mathrm{T}} f \end{array}$

The relations $\mathcal{A} \leq_{s} \mathcal{B}$ and $\mathcal{A} \leq_{w} \mathcal{B}$ are quasi-orders. For \leq_{s} :

- $\mathcal{A} \leq_{\mathrm{s}} \mathcal{A}$ via the identity $\Phi(f) = f$.
- Say $\mathcal{A} \leq_{s} \mathcal{B} \leq_{s} \mathcal{C}$. Let $\Psi(\mathcal{C}) \subseteq \mathcal{B}$ and $\Phi(\mathcal{B}) \subseteq \mathcal{A}$. Let $\Theta = \Phi \circ \Psi$. Then $\Theta(\mathcal{C}) = \Phi(\Psi(\mathcal{C})) \subseteq \mathcal{A}$, so $\mathcal{A} \leq_{s} \mathcal{C}$.

The Medvedev and Muchnik degrees

- Mass problems \mathcal{A} and \mathcal{B} are Medvedev/Muchnik equivalent $(\mathcal{A} \equiv_{\bullet} \mathcal{B})$ if $\mathcal{A} \leq_{\bullet} \mathcal{B} \& \mathcal{B} \leq_{\bullet} \mathcal{A}$.
- The Medvedev/Muchnik degree of \mathcal{A} is $\deg_{\bullet}(\mathcal{A}) = \{\mathcal{B} \subseteq \mathbb{N}^{\mathbb{N}} : \mathcal{B} \equiv_{\bullet} \mathcal{A}\}.$
- The Medvedev/Muchnik degrees are $\mathcal{M}_{\bullet} = \{ \deg_{\bullet}(\mathcal{A}) : \mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}} \}.$

A calculus of problems

Kolmogorov wanted an interpretation of propositional logic as a **logic of problem-solving** or a **calculus of problems**.

Medvedev introduced his degrees to provide semantics for propositional logic.

Muchnik introduced his degrees as a non-uniform alternative.

Here truth corresponds to solvability by a Turing machine and falsehood corresponds to impossibility.

The hope was that $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ would give semantics for intuitionistic logic.

It turns out that \mathcal{M}_s and \mathcal{M}_w give semantics for the logic of weak excluded middle:

$$\neg p \text{ or } \neg \neg p.$$

$\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ as bounded distributive lattices

 $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ are bounded distributive lattices.

Moreover, the lattice operations correspond to logical operations.

$$\mathbf{0} = \deg_{\bullet}(\mathbb{N}^{\mathbb{N}})$$
 true

$$1 = \deg_{\bullet}(\emptyset)$$
 false

$$\mathcal{A} \lor \mathcal{B} = \{ f \oplus g : f \in \mathcal{A} \& g \in \mathcal{B} \}$$
 and

 $\mathcal{A} \wedge \mathcal{B} = 0^{\widehat{}} \mathcal{A} \cup 1^{\widehat{}} \mathcal{B}$ or

For the meet operation:

- n^{f} means think of f as an infinite string and prepend n to f.
- Then $n^{\frown}\mathcal{A} = \{n^{\frown}f : f \in \mathcal{A}\}.$
- In the Muchnik degrees: $0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B} \equiv_{w} \mathcal{A} \cup \mathcal{B}$.

Meets in the Medvedev degrees

The operation $\mathcal{A} \wedge \mathcal{B} = 0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B}$ gives greatest lower bounds in \mathcal{M}_s .

Lower bound

- $0^{\frown}\mathcal{A} \cup 1^{\frown}\mathcal{B} \leq_{s} \mathcal{A}$ via $\Phi(f) = 0^{\frown}f$.
- Similarly, $0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B} \leq_{s} \mathcal{B}$.

Greatest lower bound

- Suppose $\mathcal{C} \leq_s \mathcal{A}$ and $\mathcal{C} \leq_s \mathcal{B}$.
- There are Φ , Ψ such that $\Phi(\mathcal{A}) \subseteq C$ and $\Psi(\mathcal{B}) \subseteq \mathcal{C}$.
- Let f^- denote the result of shifting f to the left: $f^-(n) = f(n+1)$. Let

$$\Theta(f) = \begin{cases} \Phi(f^-) & \text{if } f(0) = 0\\ \Psi(f^-) & \text{if } f(0) = 1. \end{cases}$$

• Then $\Theta(0^{\frown}\mathcal{A} \cup 1^{\frown}\mathcal{B}) \subseteq \mathcal{C}$. So $\mathcal{C} \leq_{s} 0^{\frown}\mathcal{A} \cup 1^{\frown}\mathcal{B}$.

A difference between $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$

Given $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$, let $C(\mathcal{A})$ denote the **Turing upward closure** of \mathcal{A} :

$$C(\mathcal{A}) = \{g : \exists f \in \mathcal{A} \ f \leq_{\mathrm{T}} g\}.$$

Then $\mathcal{A} \equiv_{w} C(\mathcal{A})$ for every $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$.

 \mathcal{M}_w is a complete lattice. The join and meet of $(\mathcal{A}_\alpha : \alpha < \kappa)$ are computed by:

$$\bigvee_{\alpha < \kappa} \mathcal{A}_{\alpha} = \bigcap_{\alpha < \kappa} C(\mathcal{A}_{\alpha}) \qquad \qquad \bigwedge_{\alpha < \kappa} \mathcal{A}_{\alpha} = \bigcup_{\alpha < \kappa} C(\mathcal{A}_{\alpha}).$$

In a sense, the Muchnik degrees are a completion of the Turing degrees.

 \mathcal{M}_{s} is **not** a complete lattice (**Dyment**).

- There are countable collections with no least upper bound.
- There are countable collections with no greatest lower bound.

Join- and meet- reducibility

Let L be a lattice.

- $a \in L$ is join-reducible if $\exists b, c < a \ (a = b \lor c)$.
- $a \in L$ is meet-reducible if $\exists b, c > a \ (a = b \land c)$.

This *a* is join-reducible.

This a is meet-reducible.

In both \mathcal{M}_{s} and \mathcal{M}_{w} :

- $\mathbf{0} = \deg_{\bullet}(\mathbb{N}^{\mathbb{N}})$ is meet-irreducible. If $\mathcal{A} \wedge \mathcal{B} = 0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B}$ has a recursive element, then either \mathcal{A} or \mathcal{B} has a recursive element.
- $1 = \deg_{\bullet}(\emptyset)$ is join-irreducible. If \mathcal{A} and \mathcal{B} are non-empty, then $\mathcal{A} \lor \mathcal{B} = \{f \oplus g : f \in \mathcal{A} \& g \in \mathcal{B}\}$ is non-empty.

An elementary difference between $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$

 $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ also have a second-least element called 0':

 $\mathbf{0}' = \deg_{\bullet}(\text{NON})$ where $\text{NON} = \{f : f \text{ is not recursive}\}.$

 $\mathbf{0}'$ is second-least: if $\mathcal{A} >_{\bullet} \mathbb{N}^{\mathbb{N}}$, then $\mathcal{A} \subseteq \operatorname{NON}$, so $\mathcal{A} \ge_{\bullet} \operatorname{NON}$.

In \mathcal{M}_s , the element $\mathbf{0}'$ is meet-irreducible.

In \mathcal{M}_{w} , the element 0' is meet-reducible.

Thus \mathcal{M}_s and \mathcal{M}_w are **not** elementarily equivalent because the second-least element is meet-reducible is expressible by a first-order sentence in the language of partial orders.

0' is meet-irreducible in $\mathcal{M}_{\rm s}$

 $\mathbf{0}' = \deg_{s}(NON)$ where $NON = \{f : f \text{ is not recursive}\}.$

Suppose that $NON \geq_s \mathcal{A} \land \mathcal{B}$. Show that $NON \geq_s \mathcal{A}$ or $NON \geq_s \mathcal{B}$.

Let Φ be such that $\Phi(NON) \subseteq 0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B}$.

Let $f \in \text{NON}$. Suppose that $\Phi(f) \in 0^{\frown} \mathcal{A}$.

- Then $\Phi(f)(0) = 0$.
- Let $\sigma \sqsubseteq f$ be an initial segment of f such that $\Phi(\sigma)(0) = 0$.

Let Ψ be the functional $\Psi(g) = \Phi(\sigma^{\frown}g)^{-}$. Let $g \in \text{NON}$.

- Then $\sigma^{\gamma}g \in \text{NON}$, so $\Phi(\sigma^{\gamma}g) \in 0^{\gamma}\mathcal{A} \cup 1^{\gamma}\mathcal{B}$.
- Also, $\Phi(\sigma^{\frown}g)(0) = 0$, so $\Phi(\sigma^{\frown}g) \in 0^{\frown}\mathcal{A}$.
- Thus $\Psi(g) = \Phi(\sigma^{\frown}g)^{-} \in \mathcal{A}$.

Thus $\Psi(NON) \subseteq \mathcal{A}$, so $NON \geq_s \mathcal{A}$.

0' is meet-reducible in $\mathcal{M}_{\rm w}$

 $\mathbf{0}' = \deg_{w}(NON)$ where $NON = \{f : f \text{ is not recursive}\}.$

Let $f \in \text{NON}$ have minimal Turing degree: If $h \leq_T f$, then either $h \equiv_T f$ or h is recursive.

Let:

$$\mathcal{A} = \{f\} \qquad \qquad \mathcal{B} = \{g : g \nleq_{\mathrm{T}} f\}$$

Then:

- $\mathcal{A} >_{w} \text{NON}$ because $\exists g \in \text{NON} \ f \nleq_{T} g$.
- $\mathcal{B} >_{w} \text{NON}$ because $f \in \text{NON}$ and $\forall g \in \mathcal{B} \ g \not\leq_{T} f$.

However, NON $\geq_{w} \mathcal{A} \cup \mathcal{B} \equiv_{w} \mathcal{A} \wedge \mathcal{B}$. So NON $\equiv_{w} \mathcal{A} \wedge \mathcal{B}$. Let $q \in NON$.

- If $g \leq_{\mathrm{T}} f$, then $g \equiv_{\mathrm{T}} f$ because f has minimal Turing degree, and $f \in \mathcal{A}$.
- If $g \not\leq_{\mathrm{T}} f$, then $g \in \mathcal{B}$.

More on reducible / irreducible Medvedev degrees

Theorem (Dyment)

Degree $a \in \mathcal{M}_s$ is meet-reducible $\Leftrightarrow a = \deg_s(\mathcal{A})$ for an \mathcal{A} for which there are r.e. sets $U, V \subseteq \mathbb{N}^{<\mathbb{N}}$ such that:

$$\begin{array}{l} \bullet \quad \forall f \in \mathcal{A} \ \exists \sigma \in U \cup V \ \sigma \sqsubseteq f \\ \bullet \quad \{f \in \mathcal{A} : \exists \sigma \in U \ \sigma \sqsubseteq f\} \ |_{s} \ \{f \in \mathcal{A} : \exists \sigma \in V \ \sigma \sqsubseteq f\}. \end{array}$$

Here, $|_{s}$ is Medvedev incomparability: $\mathcal{X} |_{s} \mathcal{Y} \Leftrightarrow \mathcal{X} \nleq_{s} \mathcal{Y} \& \mathcal{Y} \nleq_{s} \mathcal{X}$.

Theorem (S)

 $\textit{Degree } a \in \mathcal{M}_{s} \textit{ is join-irreducible } \Leftrightarrow a = \deg_{s}(\mathbb{N}^{\mathbb{N}} \setminus \mathcal{I}) \textit{ for a Turing ideal } \mathcal{I}.$

Here, $\mathcal{I} \subseteq \mathbb{N}^{\mathbb{N}}$ is a **Turing ideal** if it is:

- Downward closed under \leq_{T} : $f \in \mathcal{I} \& g \leq_{\mathrm{T}} f \Rightarrow g \in \mathcal{I}$
- Closed under Turing joins: $f, g \in \mathcal{I} \Rightarrow f \oplus g \in \mathcal{I}$.

$\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ as Brouwer algebras

We have interpretations of true, false, and, and or:

$$\mathbf{0} = \deg_{\bullet}(\mathbb{N}^{\mathbb{N}})$$
 true

$$1 = \deg_{\bullet}(\emptyset)$$
 false

$$\mathcal{A} \lor \mathcal{B} = \{ f \oplus g : f \in \mathcal{A} \& g \in \mathcal{B} \}$$
 and

$$\mathcal{A} \wedge \mathcal{B} = 0^{\widehat{}} \mathcal{A} \cup 1^{\widehat{}} \mathcal{B}$$
 or

To interpret propositional logic, we also need an interpretation of implies.

A Brouwer algebra is a bounded distributive lattice such that:

$$\forall a, b \exists \text{ least } c \ (a \lor c \ge b).$$

The witnessing c is written $a \rightarrow b$.

Brouwer algebras are the duals of the **Heyting algebras**. They provide semantics for propositional logics between **intuitionistic logic** and **classical logic**.

Paul Shafer - Leeds

$\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ as Brouwer algebras

A Brouwer algebra is a bounded distributive lattice such that:

$$\forall a, b \exists \text{ least } \underbrace{c}_{a \to b} (a \lor c \ge b).$$

The following operations make $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ into Brouwer algebras.

$$\ln \mathcal{M}_{\mathbf{s}}: \qquad \qquad \mathcal{A} \to_{\mathbf{s}} \mathcal{B} = \{ e^{\uparrow}g : \forall f \in \mathcal{A} \ \Phi_{e}(f \oplus g) \in \mathcal{B} \}$$

$$\ln \mathcal{M}_{\mathrm{w}}: \qquad \quad \mathcal{A} \to_{\mathrm{w}} \mathcal{B} \ = \ \{g: \forall f \in \mathcal{A} \ \exists h \in \mathcal{B} \ h \leq_{\mathrm{T}} f \oplus g\}$$

Intuition:

- $\mathcal{A} \to \mathcal{B}$ is the least information one must add to \mathcal{A} in order to know \mathcal{B} .
- $\mathcal{A} \to \mathcal{B}$ represents the problem of converting solutions to \mathcal{A} into solutions to \mathcal{B} .

Implication in the Medvedev degrees

 $\text{In }\mathcal{M}_{\mathrm{s}}\text{, implication is }\mathcal{A}\to\mathcal{B}\ =\ \{e^{\frown}g:\forall f\in\mathcal{A}\ \ \Phi_e(f\oplus g)\in\mathcal{B}\}.$

 $\mathcal{A} \vee (\mathcal{A} \rightarrow \mathcal{B}) \ \geq_{\mathrm{s}} \ \mathcal{B}$

• Let Ψ be

$$\Psi(f\oplus g)=\Phi_{g(0)}(f\oplus g^-).$$

• If
$$f \in \mathcal{A}$$
 and $e^{\frown}g \in \mathcal{A} \to \mathcal{B}$, then

$$\Psi(f \oplus e^{\widehat{}}g) = \Phi_e(f \oplus g) \in \mathcal{B}.$$

- Thus $\Psi(\mathcal{A} \lor (\mathcal{A} \to \mathcal{B})) \subseteq \mathcal{B}$.
- So $\mathcal{A} \vee (\mathcal{A} \to \mathcal{B}) \geq_{s} \mathcal{B}$.

Implication in the Medvedev degrees

In \mathcal{M}_{s} , implication is $\mathcal{A} \to \mathcal{B} = \{e^{\uparrow}g : \forall f \in \mathcal{A} \ \Phi_{e}(f \oplus g) \in \mathcal{B}\}.$

 $\mathcal{A} \lor (\mathcal{A}
ightarrow \mathcal{B})$ is least

- Suppose $\mathcal{A} \lor \mathcal{X} \geq_{s} \mathcal{B}$.
- Some Φ_e witness the reduction: $\Phi_e(\mathcal{A} \lor \mathcal{X}) \subseteq \mathcal{B}$.
- This means that:

$$\forall f \in \mathcal{A} \ \forall g \in \mathcal{X} \ \Phi_e(f \oplus g) \in \mathcal{B}.$$

• Let
$$\Psi$$
 be $\Psi(g) = e^{\widehat{}}g$.

• If $g \in \mathcal{X}$, then $\Psi(g) = e^{\frown}g \in \mathcal{A} \to \mathcal{B}$. So $\Psi(\mathcal{X}) \subseteq \mathcal{A} \to \mathcal{B}$. So $\mathcal{A} \to \mathcal{B} \leq_{s} \mathcal{X}$.

Could also phrase the argument as: $\mathcal{X} \equiv_{s} e^{\uparrow} \mathcal{X}$ and $e^{\uparrow} \mathcal{X} \subseteq \mathcal{A} \to \mathcal{B}$, so $\mathcal{A} \to \mathcal{B} \leq_{s} \mathcal{X}$.

Interpreting propositional formulas in Brouwer algebras

Let ${\mathfrak B}$ be a Brouwer algebra. A valuation is a function

 ν : propositional variables $\rightarrow \mathfrak{B}$.

Valuations extend to all propositional formulas by:

$$\begin{split} \nu(\varphi \And \psi) &= \nu(\varphi) \lor \nu(\psi) \\ \nu(\varphi \text{ or } \psi) &= \nu(\varphi) \land \nu(\psi) \\ \nu(\varphi \to \psi) &= \nu(\varphi) \to \nu(\psi) \\ \nu(\neg \varphi) &= \nu(\varphi) \to 1. \end{split}$$

Propositional formula φ is valid in \mathfrak{B} if $\nu(\varphi) = 0$ for every valuation ν .

Prop-Th(\mathfrak{B}) denotes the **propositional theory** given by \mathfrak{B} .

$$\operatorname{Prop-Th}(\mathfrak{B}) = \{\varphi : \varphi \text{ is valid in } \mathfrak{B}\}$$

 $\operatorname{Prop-Th}(\mathfrak{B})$ is always some logic between intuitionistic and classical logic.

Join-irreducibility and weak excluded middle

Weak excluded middle (WEM) is the law $\neg p \text{ or } \neg \neg p$.

Fact

If $\mathfrak B$ is a Brouwer algebra where 1 is join-irreducible, then $\mathfrak B$ validates WEM.

Let $b \in \mathfrak{B}$.

- If b = 1, then $(b \to 1) = (1 \to 1) = 0$.
- If b < 1, then $b \rightarrow 1 = 1$ because 1 is join-irreducible. Thus $(b \rightarrow 1) \rightarrow 1 = (1 \rightarrow 1) = 0$.
- Therefore $(b \to 1) \land ((b \to 1) \to 1) = 0.$

Thus if φ is any formula and ν is any valuation for \mathfrak{B} :

$$\nu(\neg\varphi \text{ or } \neg\neg\varphi) \ = \ (\nu(\varphi) \to 1) \ \land \ ((\nu(\varphi) \to 1) \to 1) \ = \ 0.$$

So $\neg \varphi$ or $\neg \neg \varphi$ is valid in \mathfrak{B} .

Weak excluded middle in the logic of problem-solving

In \mathcal{M}_{s} and \mathcal{M}_{w} :

- $\mathbf{0} = \deg_{\bullet}(\mathbb{N}^{\mathbb{N}})$ is the problem solvable by a computer.
- $1 = \deg_{\bullet}(\emptyset)$ is the impossible problem.
- All other problems are possible, but not solvable by computers.
- p means that p is solvable by a computer.
- $\neg p$ means that p is impossible.
- $p \rightarrow q$ means that solutions to p can compute solutions to q.
- p or $\neg p$ means that p is either solvable by a computer or impossible.
- $\neg p$ or $\neg \neg p$ means that p is either possible or impossible.
- 1 is join-irreducible in \mathcal{M}_s and \mathcal{M}_w , so they both validate $\mathrm{WEM}.$

$\mathcal{M}_{\rm\scriptscriptstyle S}\textsc{,}\ \mathcal{M}_{\rm\scriptscriptstyle W}\textsc{,}$ and weak excluded middle

Here

- IPC denotes intuitionistic logic
- **WEM** denotes IPC plus the scheme $\neg p$ or $\neg \neg p$.

Theorem

- $\operatorname{Prop-Th}(\mathcal{M}_s) = \operatorname{WEM}$. (Medvedev / Sorbi)
- Prop-Th(\mathcal{M}_w) = WEM. (Sorbi)

We know that 1 is join-irreducible in $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}.$

Thus WEM \subseteq Prop-Th(\mathcal{M}_s) and WEM \subseteq Prop-Th(\mathcal{M}_w).

How do we show the reverse inclusions?

Semantics for weak excluded middle

Semantics for IPC:

$$IPC = \bigcap \Big\{ Prop-Th(\mathfrak{B}) \ : \ \mathfrak{B} \text{ is a finite Brouwer algebra} \Big\}$$

Semantics for WEM (Jankov):

WEM =
$$\bigcap \{ \operatorname{Prop-Th}(\mathfrak{B}) : \mathfrak{B} \text{ is a finite Brouwer algebra}$$

with 0 meet-irreducible and 1 join-irreducible $\}$

Fact:

For Brouwer algebras ${\mathfrak A}$ and ${\mathfrak B}$:

$$\mathfrak{A} \hookrightarrow \mathfrak{B} \quad \Rightarrow \quad \operatorname{Prop-Th}(\mathfrak{B}) \subseteq \operatorname{Prop-Th}(\mathfrak{A})$$

So we want to embed certain finite Brouwer algebras into $\mathcal{M}_{\rm s}.$

Embedding finite algebras with irreducible 0 and 1 into \mathcal{M}_s

Theorem (Sorbi)

A finite Brouwer algebra embeds into $\mathcal{M}_s \iff 0$ is meet-irreducible and 1 is join-irreducible.

It follows that $\operatorname{Prop-Th}(\mathcal{M}_s) \subseteq \operatorname{WEM}$. Thus $\operatorname{Prop-Th}(\mathcal{M}_s) = \operatorname{WEM}$.

To prove this:

• Every finite Brouwer algebra with meet-irred. 0 and join-irred. 1 embeds into a Brouwer algebra of the form $0 \oplus \mathbb{F}(P) \oplus 1$ for a finite partial order P.

Here $0 \oplus \mathbb{F}(P) \oplus 1$ is the free distributive lattice generated by P with new bottom and top elements.

- Every finite partial order embeds into \mathcal{D}_{T} .
- Thus for every finite partial order P,

 $0 \oplus \mathbb{F}(P) \oplus 1 \quad \hookrightarrow \quad 0 \oplus \mathbb{F}(\mathcal{D}_{\mathrm{T}}) \oplus 1$

• So we want that $0 \oplus \mathbb{F}(\mathcal{D}_T) \oplus 1 \hookrightarrow \mathcal{M}_s$.

The free distributive lattice generated by a partial order

Let (P, \leq) be a partial order. The elements of $\mathbb{F}(P)$ are expressions

$$\bigvee_{j \in J} \bigwedge_{i \in I_j} p_i$$

where J and the I_j are finite sets of indices and each p_i^j is in P.

Define

$$\bigvee_{v \in V} \bigwedge_{u \in U_v} q_u^v \leq \bigvee_{j \in J} \bigwedge_{i \in I_j} p_i^j$$

if and only if

 $\forall v \in V \; \exists j \in J \; \forall i \in I_j \; \exists u \in U_v \; (q_u^v \le p_i^j)$

(Then take the quotient of the equivalence relation induced by \leq .)

$0 \oplus \mathbb{F}(P) \oplus 1$ is a Brouwer algebra

Let

$$a = \bigvee_{v \in V} \bigwedge_{u \in U_v} q_u^v \qquad \qquad b = \bigvee_{j \in J} \bigwedge_{i \in I_j} p_i^j.$$

If $a \not\geq b$, then $a \rightarrow b$ is the join of meets of b missing from a:

$$a \to b \quad = \quad \bigvee \left\{ \bigwedge_{i \in I_j} p_i^j \ : \ \forall v \in V \ \left(\bigwedge_{i \in I_j} p_i^j \not\leq \bigwedge_{u \in U_v} q_u^v \right) \right\}$$

If $a \ge b$, then $a \to b$ should be 0.

Thus $0 \oplus \mathbb{F}(P) \oplus 1$ is a Brouwer algebra.

Embedding $0 \oplus \mathbb{F}(\mathcal{D}_T) \oplus 1$ into \mathcal{M}_s

For $f: \mathbb{N} \to \mathbb{N}$, let \mathcal{B}_f be NON relativized to f:

$$\mathcal{B}_f = \{h : h \nleq_{\mathrm{T}} f\} \qquad \qquad \mathbf{b}_f = \mathrm{deg}_{\mathrm{s}}(\mathcal{B}_f).$$

Then

$$f \leq_{\mathrm{T}} g \quad \Leftrightarrow \quad \mathcal{B}_g \subseteq \mathcal{B}_f \quad \Leftrightarrow \quad \mathcal{B}_f \leq_{\mathrm{s}} \mathcal{B}_g$$

Thus the map

$$\deg_{\mathrm{T}}(f) \mapsto \boldsymbol{b}_{f}$$

embeds \mathcal{D}_{T} into \mathcal{M}_{s} as a partial order.

Embedding $0 \oplus \mathbb{F}(\mathcal{D}_T) \oplus 1$ into \mathcal{M}_s

 $\mathsf{Recall:} \quad \mathcal{B}_f \ = \ \{h : h \not\leq_{\mathrm{T}} f\} \quad \mathbf{b}_f \ = \ \deg_{\mathrm{s}}(\mathcal{B}_f).$

The degrees b_f are join- and meet-irreducible.

Moreover:

$$\bigvee_{v \in V} \bigwedge_{u \in U_v} oldsymbol{b}_{g^v_u} \hspace{0.1 in} \leq_{\mathrm{s}} \hspace{0.1 in} \bigvee_{j \in J} \bigwedge_{i \in I_j} oldsymbol{b}_{f^j_i}$$

if and only if

$$\forall v \in V \;\; \exists j \in J \;\; \forall i \in I_j \;\; \exists u \in U_v \;\; (\boldsymbol{b}_{g^v_u} \leq_{\mathrm{s}} \boldsymbol{b}_{f^j_i}).$$

Also:

$$\bigvee_{v \in V} \bigwedge_{u \in U_v} \mathbf{b}_{g_u^v} \to \bigvee_{j \in J} \bigwedge_{i \in I_j} \mathbf{b}_{f_i^j}$$

$$= \bigvee \left\{ \bigwedge_{i \in I_j} \mathbf{b}_{f_i^j} : \forall v \in V \left(\bigwedge_{i \in I_j} \mathbf{b}_{f_i^j} \not\leq_{\mathrm{s}} \bigwedge_{u \in U_v} \mathbf{b}_{g_u^v} \right) \right\}$$

Embedding $0 \oplus \mathbb{F}(\mathcal{D}_T) \oplus 1$ into \mathcal{M}_s

Thus $0\oplus \mathbb{F}(\mathcal{D}_T)\oplus 1$ embeds into \mathcal{M}_s as a Brouwer algebra:

$$\begin{array}{ccccc} 0 & \mapsto & \mathbf{0} \\ & \bigvee_{j \in J} \bigwedge_{i \in I_j} \deg_{\mathrm{T}}(f_i^j) & \mapsto & \bigvee_{j \in J} \bigwedge_{i \in I_j} \mathbf{b}_{f_i^j} \\ & 1 & \mapsto & \mathbf{1} \end{array}$$

This shows that $\operatorname{Prop-Th}(\mathcal{M}_s) \subseteq \operatorname{WEM}$.

Thus $\operatorname{Prop-Th}(\mathcal{M}_s) = \operatorname{WEM}.$

 $\operatorname{Prop-Th}(\mathcal{M}_w) = \operatorname{WEM} \text{ is also true. (Sorbi)}$

Initial intervals as semantics for propositional logic

Let \mathfrak{B} be a Brouwer algebra, and let a < b be elements of \mathfrak{B} .

Then the interval $[a, b] = \{x \in \mathfrak{B} : a \leq x \leq b\}$ is also a Brouwer algebra.

Thus for every b > 0, the initial interval [0, b] is a Brouwer algebra.

It is possible to realize ${\rm IPC}$ as the logic of an initial interval of \mathcal{M}_s and $\mathcal{M}_w.$

Theorem

- $\exists b \in \mathcal{M}_s \text{ such that } \operatorname{Prop-Th}(\mathcal{M}_s[0, b]) = \operatorname{IPC.}$ (Skvortsova = Dyment)
- $\exists b \in \mathcal{M}_w$ such that $\operatorname{Prop-Th}(\mathcal{M}_w[0, b]) = \operatorname{IPC}$. (Sorbi & Terwijn)

Alternate proofs of these theorems are given by Kuyper.

Initial intervals as semantics for propositional logic

In \mathcal{M}_s , every non-trivial initial interval yields a logic between IPC and WEM.

Theorem (Kuyper)

Let $b\in \mathcal{M}_{\mathrm{s}}$ be a degree with $b>_{\mathrm{s}}0'.$ Then

IPC \subseteq Prop-Th($\mathcal{M}_{s}[\mathbf{0}, \boldsymbol{b}]$) \subseteq WEM.

(The above theorem is **false** for \mathcal{M}_{w} .)

Infinitely many different logics are obtained from initial segments of \mathcal{M}_{s} .

Theorem (Sorbi & Terwijn)

There is an ascending sequence $m{b}_0 <_{
m s} m{b}_1 <_{
m s} m{b}_2 <_{
m s} \cdots$ in $\mathcal{M}_{
m s}$ such that

 $\operatorname{Prop-Th}(\mathcal{M}_{s}[\boldsymbol{0},\boldsymbol{b}_{0}]) \supseteq \operatorname{Prop-Th}(\mathcal{M}_{s}[\boldsymbol{0},\boldsymbol{b}_{1}]) \supseteq \operatorname{Prop-Th}(\mathcal{M}_{s}[\boldsymbol{0},\boldsymbol{b}_{2}]) \supseteq \cdots$

Embedding large objects into $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$

 $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ have antichains of size $2^{\mathfrak{c}}$. (Platek)

That \mathcal{M}_s and \mathcal{M}_w have chains of size $2^{\mathfrak{c}}$ is consistent with ZFC. (Terwijn)

That \mathcal{M}_{s} and \mathcal{M}_{w} do not have chains of size $2^{\mathfrak{c}}$ is also consistent with ZFC. (S)

In fact, \mathcal{M}_{s} and \mathcal{M}_{w} have chains of size κ if and only if $(\mathcal{P}(\mathfrak{c}), \subseteq)$ does. (S)

 $(\mathcal{P}(\mathfrak{c}), \supseteq)$ embeds into \mathcal{M}_s as an upper semi-lattice. (Terwijn)

But only countable Boolean algebras embed into M_s as lattices. (Terwijn)

 $(\mathcal{P}(\mathfrak{c}),\supseteq)$ embeds into \mathcal{M}_w as a lattice. (Terwijn)

Embedding \mathcal{D}_{T} into \mathcal{M}_{s} and \mathcal{M}_{w}

 \mathcal{D}_T embeds into \mathcal{M}_s and \mathcal{M}_w as an upper semi-lattice with 0:

 $\deg_{\mathrm{T}}(f) \mapsto \deg_{\mathrm{s}}(\{f\}) \qquad \qquad \deg_{\mathrm{T}}(f) \mapsto \deg_{\mathrm{w}}(\{f\})$

Theorem (Medvedev / Muchnik / Dyment)

For both \mathcal{M}_s and \mathcal{M}_w , the range of the embedding of $\mathcal{D}_T \hookrightarrow \mathcal{M}_{\bullet}$ is defined by the following formula $\varphi(x)$ saying that x has an immediate successor:

$$\exists a \ (x < a \& \forall b \ (x < b \rightarrow a \le b)).$$

For $\deg_{\bullet}(\{f\})$, the witnessing *a*'s are:

$$\deg_{\mathbf{s}}\left(\{e^{\widehat{}}g:g>_{\mathbf{T}}f \& \Phi_{e}(g)=f\}\right)$$

$$\deg_{\mathbf{w}}(\{g:g>_{\mathbf{T}}f\}).$$

Embedding $\mathcal{M}_{\rm w}$ into $\mathcal{M}_{\rm s}$

Recall that $C(\mathcal{A}) = \{g : \exists f \in \mathcal{A} \ f \leq_{\mathrm{T}} g\}$ is the upward closure of $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$.

Theorem (Muchnik)

 \mathcal{M}_w embeds into \mathcal{M}_s as a lattice with 0 and 1 via the following map.

 $\deg_{\mathbf{w}}(\mathcal{A}) \mapsto \deg_{\mathbf{s}}(C(\mathcal{A}))$

Theorem (Dyment)

The range of the embedding $\mathcal{M}_w \hookrightarrow \mathcal{M}_s$ is definable in $\mathcal{M}_s.$

The formula $\psi(\boldsymbol{x})$ defining \mathcal{M}_{w} in \mathcal{M}_{s} says:

For every degree a, if $s \geq_{\mathrm{s}} x$ whenever $s \geq_{\mathrm{s}} a$ is a singleton degree, then $x \leq_{\mathrm{s}} a$.

The first-order theories of $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$

 $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}$ are as complicated as possible. Let:

- $\mathbf{Th}(\mathcal{M}_{\bullet})$ denote the first-order theory of \mathcal{M}_{\bullet} .
- $\mathbf{Th}_3(\mathbb{N})$ denote the third-order theory of \mathbb{N} .

 $Th(\mathcal{M}_{\bullet}) = \{1^{st}\text{-order sentences } \varphi \text{ in the language of p.o.'s } : \mathcal{M}_{\bullet} \models \varphi\}$ $Th_{3}(\mathbb{N}) = \{3^{rd}\text{-order sentences } \varphi \text{ in the language of arithmetic } : \mathbb{N} \models \varphi\}.$

Theorem (S; independently Lewis-Pye, Nies, Sorbi)

 $\operatorname{Th}(\mathcal{M}_s) \equiv_1 \operatorname{Th}(\mathcal{M}_w) \equiv_1 \operatorname{Th}_3(\mathbb{N}).$

Determining whether a 1^{st} -order sentence is true of \mathcal{M}_{s} or \mathcal{M}_{w} is exactly as hard as determining whether a 3^{rd} -order sentence is true of \mathbb{N} .

Compact mass problems

Here we focus on mass problems that are closed subsets of $2^{\mathbb{N}}$.

Mass problem $\mathcal{A} \subseteq 2^{\mathbb{N}}$ is closed if there is a tree $T \subseteq 2^{<\mathbb{N}}$ such that

$$\mathcal{A} = [T] =$$
 the set of infinite paths through T .

Mass problem $\mathcal{A} \subseteq 2^{\mathbb{N}}$ is effectively closed if there is a recursive tree $T \subseteq 2^{<\mathbb{N}}$ such that $\mathcal{A} = [T]$.

Closed / effectively closed mass problems yield natural sub-lattices of $\mathcal{M}_{\rm s}$ and $\mathcal{M}_{\rm w}.$

$$\begin{array}{lll} \mathcal{M}^{01}_{\mathrm{s,cl}} &=& \{ \deg_{\mathrm{s}}(\mathcal{A}) : \mathcal{A} \subseteq 2^{\mathbb{N}} \text{ is closed} \} \\ \mathcal{M}^{01}_{\mathrm{w,cl}} &=& \{ \deg_{\mathrm{w}}(\mathcal{A}) : \mathcal{A} \subseteq 2^{\mathbb{N}} \text{ is closed} \} \\ \mathcal{E}^{01}_{\mathrm{s}} &=& \{ \deg_{\mathrm{s}}(\mathcal{A}) : \mathcal{A} \subseteq 2^{\mathbb{N}} \text{ is effectively closed} \} \\ \mathcal{E}^{01}_{\mathrm{w}} &=& \{ \deg_{\mathrm{w}}(\mathcal{A}) : \mathcal{A} \subseteq 2^{\mathbb{N}} \text{ is effectively closed} \} \end{array}$$

Theorem (Lewis-Pye, Shore, Sorbi / Higuchi / Simpson) These sub-lattices are **not** Brouwer algebras.

Paul Shafer - Leed

Medvedev and Muchnik Degrees

The first-order theories of the closed degrees

The closed and effectively closed degrees are as complicated as possible.

Theorem (S)

$$\begin{array}{ll} \mathrm{Th}(\mathcal{M}^{01}_{\mathrm{s},\mathrm{cl}}) & \equiv_1 & \mathrm{Th}(\mathcal{M}^{01}_{\mathrm{w},\mathrm{cl}}) & \equiv_1 & \mathrm{Th}_2(\mathbb{N}) \\ \mathrm{Th}(\mathcal{E}^{01}_{\mathrm{s}}) & \equiv_1 & \mathrm{Th}(\mathbb{N}) \end{array}$$

Furthermore, $Th(\mathcal{E}^{01}_w)$ is undecidable.

For $\mathcal{M}_{\rm s},\,\mathcal{M}_{\rm w},$ and their closed and effectively closed substructures:

- the 3-quantifier theory in the language of lattices is undecidable
- the 4-quantifier theory in the language of partial orders is undecidable.

Theorem (Cole & Kihara)

The 2-quantifier theory of $\mathcal{E}_{\rm s}^{01}$ in the language of partial orders is decidable.

Merci!

Thank you for attending my talk! Do you have a question about it?

Further reading:

- Peter G. Hinman, A survey of Mučnik and Medvedev degrees, Bulletin of Symbolic Logic 18 (2012), no. 2, 161–229.
- [2] Stephen G. Simpson, Mass problems associated with effectively closed sets, Tohoku Mathematical Journal, Second Series 63 (2011), no. 4, 489–517.
- [3] Andrea Sorbi, The Medvedev lattice of degrees of difficulty, Computability, Enumerability, Unsolvability, 1996, pp. 289–312. MR1395886