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Motivating questions

Motivating Question 1
How hard is it to determine that an effectively given structure
has particular properties?

Motivating Question 2
How hard is it to classify effectively given structures from a
class, i.e., to determine when two structures are equivalent?

Motivating Question 3
How to classify structures on-the-fly? I.e., seeing a finite part of
a structure from a fixed class, how can we determine which of
the structures we are observing?

Motivating Question 4
How to go beyond computable?
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Oracle Turing machines and reducibility

To formalize the idea of

non-

computability,
we use

Turing machines.

with oracles.

Let X ,Y be sets of natural numbers.

Definition
1 Then X is Y -computable, X T Y , iff there exists an

oracle Turing machine that decides (the membership in) X

using Y as an oracle.
2 The sets X ⌘T Y iff X T Y and Y T X .
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Turing degrees

Definition
A Turing degree is an equivalence class of ⌘T .

Definition
• 0 is the degree of ; (all computable sets).
• 00 is the degree of the halting set, or

K = {e : 'e(e) #}

• if d is the degree of a set X , then d 0 is the degree of X 0,
where

X
0 = {e : �X

e (e) #}.
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Arithmetical hierarchy
Let ⌃0

1 be the collection of all the sets of the form

{x : 9nQ(n, x) for a computable Q(x , n)}

(i.e., all the computably enumerable, or c.e., sets).
Let ⇧0

1 consist of the complements of ⌃0
1 sets, i.e. sets of the

form
{x : 8nQ(n, x) for a computable Q(x , n)}.

More generally: ⌃0
n sets have the form

{x : 9nQ(n, x) for a ⇧0
n�1 relation Q(x , n)}.

⇧0
n sets have the form

{x : 8nQ(n, x) for a ⌃0
n�1 relation Q(x , n)}.

�0
n sets are ⌃0

n \ ⇧0
n. 7



Arithmetical hierarchy: examples

A set is ⇧0
2 if it is of the form 8x9yP(n, x , y) or, equivalently

91xP(n, x).

A set is ⌃0
3 if it is of the form 9u8x9yP(n, u, x , y) or, equivalently

9u91xP(n, u, x). Sometimes such witnesses u with infinitely
many x ’s are called infinitary, otherwise finitary.
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Hyperarithmetical and analytical hierarchies

Hyperarithmetical hierarchy:
defines, for all computable ordinals ↵: ⌃0

↵,⇧
0
↵,�

0
↵ sets.

Analytical hierarchy:

⌃1
1 sets are those presentable as x 2 X () 9f8nR(x , f � n),

where R is computable.

⇧1
1 sets are those presentable as x 2 X () 8f9nR(x , f � n).

�1
1 = ⌃1

1 \ ⇧1
1 are exactly the hyperarithmetical sets.
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Computable structures
For a structure in a finite vocabulary on !, being computable
simply means that the basic relations and/or functions are
computable.

• A group G = (!, ⇤) is computable, if ⇤ is a (total)
computable function, i.e., we can effectively get a ⇤ b = c.

• A linear order L = (!, <) is computable, if < is a
computable relation.

Example
Computable structures:

1 All finite structures
2 The standard model of arithmetic: N = {!,+,⇥,, 0, 1}
3 The dense linear order (Q,)

4 The random graph G = (!,E)

5 Field of rationals, Q(X ),Q(
p

2), etc.
6 Free group on countably many generators 10



Computable structures, general definition

More generally,

Definition
A structure A = (A,Rn0

0 ,Rn1
1 , . . .) is computable if its

quantifier-free diagram D(A) is computable (thought of as a
subset of !),

where D(A) consists of all quantifier-free sentences ' with
constants from A, such that A |= ', i.e.,
ai ⇤ aj = ak , am ⇤ an 6= al , as < at , etc.
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Dynamic definition

Let L be a computable language.

TFAE:
• A is a computable L-structure.
• The following holds:

1 there exists a computable sequence {Ln}n2N, such that
L =

S
n
Ln, and each Ln is finite;

2 there exists a computable sequence of finite structures

A0 ✓ A1 ✓ . . . ✓ An ✓ . . . ,

such that for every n, An is an Ln-structure and

A =
[

n

An.
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Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Computable structures

Many of the working examples in this talk will be of the form
A = (A,E).

A

B

C

D

E

F

G

H

I

13



Existence of computable presentations

One of the main questions of computable model theory:

Question
Does a particular structure A have a computable presentation?

More generally, what complexity can equivalent copies of the

structure have?

Definition
A structure A is d-computable if its atomic diagram D(A) is a
d-computable subset of !.

14



Non-computable structures

Example 1: Daisy graphs.
For X ✓ !, consider a graph GX with:
• a special vertex c, and
• for n 2 X , a cycle of length 2n + 2

starting at c, and
• for n /2 X , a cycle of length 2n + 3

starting at c.

Then if X is not computable, GX is not
computable.

Example 2.
Let X be a non-computable set. Consider a linear order
A = (X ,A), where x A y () x  y . Then A is not
computable by definition but it is isomorphic to the standard
(N,), which is computable. 15



Computable presentations

Definition
A presentation of a structure A is an isomorphic copy B of A.

Example
For a set X , the daisy graph GX is deg(X )-computable.
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Computable equivalence structures I

Definition
An equivalence structure is a structure A = (A,E), where E

is an equivalence relation on A.

Example
An equivalence structure with infinitely many equivalence
classes of size one and infinitely many classes of size two (and
no other classes) has a computable presentation.

0 1

2

3 4

5

6 7

8
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Another presentation of the same structure

The structure A from the previous slide:

0 1

2

3 4

5

6 7

8

Let X be a c.e. set. Define AX as follows. If n 2 Xs, we let
(2n, 2s + 1) 2 E . Otherwise |[2n]E | = 1. For example, if
5 2 A1, 4 2 A12 and 1 2 A8:

0 2 4 6 8 10

17 25 3
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Why are the presentations different?

Both presentations are computable but there is a significant
difference.

• For every element of A, the size of its equivalence class
can be found effectively.

• For AX , the function f (x) which gives back the size of [x ]E
in AX is ⌘T X . In particular, if X is not computable, f (x) is
not computable.

• Obviously, A ⇠= AX , for every infinite and co-infinite X .
However, if X is not computable (but still c.e.), then the
isomorphism between A and AX is not computable
(otherwise we could pull back and compute the sizes of
equivalence classes in AX ).

This is something we will use later today.

19



Computable equivalence structures II

Theorem (Ash & Knight 2000, or Calvert, Cenzer,
Harizanov, Morozov, 2006)
An equivalence structure has a computable presentation (i.e.,

isomorphic copy) if

1 �(A) = {(n, k) : cn(A) � k} is ⌃0
2 and

2 one of the following:

• {n : cn(A) 6= 0} is finite, or

• c1(A) is infinite, or

• there is a computable function f such that for each n, f (n, s)
is non-decreasing in s, with limit f ⇤(n) � n, where

cf⇤(n)(A) 6= 0.

20



More computable structures

• A hyperarithmetic ordinal always has a computable
isomorphic copy (Spector, 1955).

• Every hyperarithmetic linear order has a bi-embeddable
computable copy (Montalbán, 2005).

• Every hyperarithmetic Boolean algebra, a hyperarithmetic
tree, a hyperarithmetic abelian p-group have a computable
bi-embeddable copy (Greenberg, Montalbán, 2008).

• Every equivalence structure has a computable
bi-embeddable copy (F., Rossegger, San Mauro, 2017).

21



Typical questions in CST

Question
• When does a structure with specific algebraic,

model-theoretic, etc. properties have a computable

presentation, up to a chosen equivalence relation?

• What happens when it has no computable presentation?

• What is the complexity of these equivalence relations

between structures?

In this talk we consider the other direction:

Question
• Given a computable structure, does it have specific

algebraic, algorithmic, model-theoretic properties? How

hard ist it to answer this question?

• Given two computable structures, how hard is it to

determine if they are isomorphic, or otherwise equivalent

(bi-embeddable, etc.)? 22
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Indexing computable structures

Recall: we can measure the complexity of subsets of the
natural numbers using the
arithmetical/hyperarithmetical/analytical hierarchies.

Using a Gödel numbering, we identify formulas with natural
numbers.
The complexity of a structure A is the complexity of its atomic
diagram D(A).
One can effectively enumerate all the atomic diagrams of
computable structures: A0,A1, . . . ,An, . . .

24



Index sets of classes of structures

Let K be a class of countable L–structures closed under
isomorphism.
Consider the set K c of all computable structures from K .
Identify each computable L–structure with its index i 2 !.Then
K c can be identified with the set I(K ) of indices of its members:

I(K ) = {i 2 !|Ai 2 K
c}.

Goncharov and Knight, 2002: I(K ) is hyperarithmetical
() K c = Modc

' for a computable infinitary sentence '.

25



Complexity of algebraic properties: upper bounds

Proposition (folklore, to find in Goncharov-Knight 2002)
The index set I(K ) is a ⇧0

2-set for the following classes K :

1 linear orderings;

2 Boolean algebras;

3 Abelian p-groups;

4 equivalence structures;

5 vector spaces over Q;

6 structures for a fixed computable language.

Idea of the proof: examine the complexity of axioms.
Notice: the index set for a class K must be at least ⇧0

2, thus, the
above level of complexity is sharp.

26



Sharpness of the estimated complexity: lower bounds

Definition
Let � be a complexity class (e.g., ⌃0

3,⇧
1
1, etc.). I(K ) is

m-complete � if I(K ) is � and for any S 2 �, there is a
computable function f such that

n 2 S iff f (n) 2 I(K ).

In other words, there is a computable sequence of computable
L-structures {An}n2! for which n 2 S iff An 2 K .

Proposition (Kleene, Spector)
The index set I(K ) is ⌃1

1-complete for the following classes K :

1 well orderings;

2 superatomic Boolean algebras;

3 reduced Abelian p-groups.

27



Complexity of model-theoretic properties

Theorem
1 (White; Pavlovsky) The index set of computable prime

models is an m-complete ⇧0
!+2 set.

2 (White) The index set of computable homogeneous models

is an m-complete ⇧0
!+2 set.

3 (F.) The index set of structures with decidable countably

categorical theories is an m-complete ⌃0
3 � ⌃0

3 set.

4 (Calvert et al.) The index set of computable structures with

noncomputable Scott ranks is m-complete ⌃1
1.

28



Complexity of computability-theoretic properties

Theorem
1 (F.) The index set of decidable structures is ⌃0

3-complete.

2 (White) The index set of hyperarithmetically categorical

structures is ⇧1
1-complete.

3 (Downey et al.’13) The index set of relatively computably

categorical structures is ⌃0
3-complete.

4 (Downey et al.’15) The index set of computably categorical

structures is ⇧1
1-complete.
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Proof sketch: upper bound

Definition
A structure A is decidable if its complete diagram, i.e., the set
of all sentences with constants from |A| that are true in A, is
computable.

Theorem
The index set of decidable structures is ⌃0

3-complete.

I(K ) is ⌃0
3.

n 2 I(K ) iff (9m)[the function 'm has the following properties:
1 'm is total, has values only in {0, 1} and
2 (8k)(if k is the number of an open sentence, then 'm(k) = 1 , the

sentence with the number k is true in Mn)

3 &(8k)(if k is the number of a conjunction of 2 sentences with numbers
k1, k2, then 'm(k) = 1 , 'm(k1) = 1&'m(k2) = 1)

4 & . . .&(8k)(if k is the number of a sentence of the form 8y k0 , then
'm(k) = 1 , (8l)('m(kl) = 1, where kl is the number of the sentence
obtained from  k0 by substitution of all free entries of variable y for l))]. 30



Proof sketch: lower bound

Lemma (Ershov)
There exists a decidable linear ordering L = (N,�) of the type

! + !⇤, such that the initial segment of the type ! is not c.e.

Now take an arbitrary A 2 ⌃0
3. Then there exists a computable predicate

Q(n, x , y) such that

n 2 A () (9x)(91
y)Q(n, x , y).

We construct a computable sequence {Ln} of computable structures, such
that

n 2 A , Ln decidable;
n /2 A , Ln is not decidable.

Let L be from the lemma above. For all x 2 L and for all n we consider the set
L(n,x) = {hx 0, y 0i|x 0  x and Q(n, x 0, y 0)} that is uniformly computable. Let
R(n,x) be a linear ordering of L(n,x) such that

if L(n,x) is infinite then (L(n,x),R(n,x)) has the type ⌘;
if L(n,x) is finite then (L(n,x),R(n,x)) is a linear ordering.

We define now Ln ↵ P
x2L

L(n,x). 31



Proof sketch: lower bound II

if L(n,x) is infinite then (L(n,x),R(n,x)) has the type ⌘;

if L(n,x) is finite then (L(n,x),R(n,x)) is a linear ordering.

We define now Ln ↵ P
x2L

L(n,x).
If n 2 A then (9x0)(91

y)Q(n, x0, y). Thus, for all x such that x0  x the set
L(n,x) is infinite. By the definition of R(n,x)

Ln
⇠=

r(n)X

k=0

Sk + Pk ,

where Sk is finite and Pk
⇠= ⌘ for every k  r(n), r(n) is finite and depends on

n. Thus, Ln is decidable. If n /2 A then for all x the set L(n,x) is finite and
Ln

⇠= ! + !⇤. By the above lemma Ln is computable as L is computable. At
the same time Ln is not decidable, as otherwise we could enumerate !, which
then would be c.e.
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Why equivalence relations

Theorems on classification/uniqueness up to an equivalence
relation appear everywhere through out mathematics:

Theorem
Let (X , d) be a metric space. Then there exists its completion

(X ⇤, d⇤) and it is unique up to isometry.

Theorem
If A1,A2 are two smooth structures on R then there exists a

diffeomorphism F : (R,A1) ! (R,A2).

Homeomorphisms, homotheties, (quasi)-isometries, . . .
Equivalence of functions, norms, . . .

34



Measuring the complexity
Let K be a class of structures and E be an equivalence
relation. Recall: I(K ) is the set of indices of structures from K

in a fixed enumeration of all computable structures in the
vocabulary of K . Goncharov & Knight:

Definition

I(E ,K ) = {(m, n)|m, n 2 I(K ) and AmEAn}

Definition
Let � be a complexity class (e.g., ⌃0

3,⇧
1
1, etc.). I(E ,K ) is

m-complete � if I(E ,K ) is � and for any S 2 �, there is a
computable function f such that

n 2 S iff f (n) 2 I(E ,K ).

In other words, there is a computable sequence of pairs of
computable L-structures {(An,Bn)}n2! from K for which
n 2 S iff AnEBn.
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Examples

Example (Calvert)
The isomorphism problem for the class K of:

• vector spaces over Q is ⇧0
3;

• algebraically closed fields of a given characteristic is ⇧0
3;

• reduced Abelian p-groups of length ! is ⇧0
3;

• torsion free Abelian groups of finite characteristic is ⌃0
3.

Example
The isomorphism problem is ⌃1

1-complete for:
• Abelian p-groups;
• trees;
• Boolean algebras;
• linear orderings.

36



Bi-embeddability

Example (Carson, F., Harizanov, Knight, Maher, Quinn,
Wallbaum)
The complexity of the isomorphism problem and the
bi-embeddability problem coincide:

• vector spaces over Q;
• torsion free Abelian groups of finite characteristic;
• linear orderings, Boolean algebras, Abelian p-groups;
• undirected graphs.

The isomorphism problem and the bi-embeddability problem
has different complexity:

• free groups on a finite number of generators;
• reduced Abelian p-groups of length !;
• linear orderings of some special form.
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Reductions of equivalence relations

Using m-reducibility of sets glues equivalence classes together,
so we loose a lot of information about the structure of the
equivalence relation.

Definition
A reduction of an equivalence relation E on X to an
equivalence relation F on Y is a function f : X ! Y such that

xEy () f (x)Ff (y).

As a function on equivalence classes, f : X/E ! Y/F is
injective.
If we impose no restrictions on f , then by the Axiom of Choice,
a reduction from E to F simply means that F has at least as
many equivalence classes as E .
The structure becomes much more interesting and complicated
if we impose definitional or algorithmic requirements on the
spaces and reducing functions. 38



Motivation from Descriptive Set Theory

H. Friedman and Stanley (1989) and Harrington, Kechris, and
Louveau (1990): definable equivalence relations under Borel
reducibility.

Definition
Let E and F be equivalence relations on Polish spaces X and
Y respectively. Then E B F if there is a Borel h : X ! Y , such
that

xEy () h(x)Fh(y).

If E and F are Borel bi-reducible, we write E ⇠B F .
The theory of Borel reductions has since then expanded into a
broad field of research with deep connections to topology,
group theory, combinatorics, model theory, ergodic theory, etc.
Calvert, Cummings, Knight, S. Miller (Quinn) (2004):
tc–reducibility as an effective analogue of the Borel reducibility.
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Computable reducibility

Definition (Ershov; Lachlan, 1970’s)
Let E ,F be equivalence relations on (subsets of) !. Then
E c F if there exists a computable function h, such that for all
x , y

xEy () h(x)Fh(y).

If E and F are computably bi-reducible, we write E ⇠c F .
The history of computable reducibility is complicated. After
being introduced and studied in the 1970’s, it was forgotten and
rediscovered multiple times, sometimes under different names.
Computable reducibility has found applications in various fields,
such as the theory of numberings, proof theory, computable
structure theory, combinatorial algebra, and theoretical
computer science. Its systematic study began only about 15
years ago.

40



Isomorphism on countable structures

One of the main motivating questions to study Borel reductions
was to develop a general framework to measure and compare
the complexity of isomorphism relations on classes of
countable structures K .
For a countable language L, let Mod(L) denote the collection of
all countable L-models with universe !. Then each element of
Mod(L) can be viewed as an element of the product space

XL =
Y

i2I

2!n
i

which is homeomorphic to the Cantor space.

41



Borel on top

Definition
A class K of countable structures is on top for B if, for every
countable language L, ⇠=L Borel reduces to ⇠=K .

Many familiar classes are on top:
• H. Friedman, Stanley (1989): Undirected graphs, trees,

linear orders;
• Camerlo, Gao (2001): Boolean algebras;
• Paolini, Shelah (preprint): Torsion-free abelian groups.

Some are not on top, e.g., torsion abelian groups.

42



Computable reducibility on classes of structures

1 Consider a (nice) class of structures K .
2 Identify computable structures K c from K with the set

I(K ) ✓ ! of indices in a fixed effective enumeration of
computable structures.

3 Identify a relation E on K c with the binary relation
{(i , j)|i , j 2 I(K )andAiEAj} ✓ !2.

Then, to compare isomorphism relations on computable
structures, we considers partial computable reductions with
domain containing the relevant set I(K ). More generally:

Definition
Let E ,F be equivalence relations on (hyperarithmetical)
subsets X ,Y of ! respectively. Then E is computably reducible
to F , E c F , if there exists a partial computable function h,
such that X ✓ dom(h), h(X ) ✓ Y and for all i , j 2 X ,

iEj () h(i)Fh(j).
43



Bi–embeddability is ⌃1
1 complete

Theorem (F. and S. Friedman)
The equivalence relation of bi-embeddability on computable

graphs is ⌃1
1 complete among equivalence relations.

Theorem (F., S. Friedman, Harizanov, Knight, McCoy,
Montalbán)
The equivalence relation of isomorphism on computable

structures from the following classes is complete for all ⌃1
1

equivalence relations on !:

1 graphs and trees,

2 torsion–free abelian groups,

3 abelian p–groups,

4 fields, and others.

Notice differences from the Borel theory. 44



Effective isomorphism

Theorem (F., S. Friedman, Nies)
The computable isomorphism on computable structures is a ⌃0

3
complete equivalence relation for the following classes:

• trees,

• equivalence structures,

• Boolean algebras, and others.

The result relativizes for any computable successor ordinal.

Theorem (Greenberg, Turetsky)
The relation of hyperarithmetical isomorphism is complete for

⇧1
1 equivalence relations.
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Proof sketch

Recall that sets A,B ✓ ! are 1-equivalent, A ⌘1 B, if there is a
computable permutation h of ! such that h(A) = B.

Theorem
For each ⌃0

3 equivalence relation S, there is a computable

function g such that

ySz ) Wg(y) ⌘1 Wg(z), and

¬ySz ) Wg(y),Wg(z) are Turing incomparable.

As an immediate consequence, we have:

Corollary
Many-one equivalence and 1-equivalence on indices of c.e.

sets are ⌃0
3 complete for equivalence relations under

computable reducibility.
46



Proof sketch

We code the above result in equivalence structures:

Proposition
Computable isomorphism of computable equivalence relations

where every class has at most 2 members is a complete ⌃0
3

equivalence relation.

Proof.
Recall the equivalence structures AX built from c.e. sets X . It is
easy to see that Wy ⌘1 Wz iff AWy

is computably isomorphic to
AWz

. Now we apply Corollary.
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Proof sketch

We code the above result in trees:

Proposition

Computable isomorphism of computable trees of height 2
where every node at level 1 has out-degree at most 1 is a

complete ⌃0
3 equivalence relation.

Proof.
Let h be a computable function such for each e, Th(e) is the tree

{;} [ {hxi : x 2 !} [ {hx , 0i : x 2 We}.

Clearly, Wy ⌘1 Wz iff Th(y) is computably isomorphic to Th(z).
Now we apply Corollary.

48



1 Introduction and Main Definitions

2 CST and Complexity of Descriptions

3 Equivalence Relations in CST

4 Classification Based on Learning

5 Beyond computable

49



On-the-fly classification of structures

• Suppose we have a class of (countable) structures.
• Suppose we are stage by stage seeing one of the

structures from the class: at each step a larger and larger
finite piece of the structure.

Question
Can we, after finitely many steps, identify the structure (up to a

suitable equivalence relations)?

Classifiable = after finitely many steps we correctly identify
the seen structure

50



Examples

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !⇤

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.
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Conclusion and overview

• How is the structure “revealed”?
• Main approach: both the positive and the negative

information about the structure (motivated by computable
structures).

• What does it mean “to classify”, or “to identify” the
structure?

• It turns out that it is convenient to use the terminology and
ideas from computational learning theory.

• The results still belong to computable structure theory,
revealing interesting links to descriptive set theory and
topology.
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Computational Learning Theory

Computational Learning Theory (CLT): deals with the question
of how a learner, provided with more and more data about
some environment, is eventually able to achieve systematic
knowledge about it.

• (Gold, 1967): language identification.
Most work in CLT concerns

• either learning of total functions (where the order in which
the data is received matters)

• or learning of formal languages (where the order does not
matter)

These paradigms model the data to be learned as an
unstructured flow — but what if one deals with data having
some structural content?
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CLT and Structures
More recently researchers applied the machinery of CLT to
algebraic structures:

• Glymour, 1985
• Martin, Osherson, 1998
• Stephan, Ventsov, 2001: learning ring ideals of

commutative rings.
• Merkle, Stephan, 2004 learning isolated branches on

uniformly computable sequences of trees.
• Harizanov, Stephan, 2007: learning subspaces of V1.
• Gao, Stephan, Wu, Yamamoto, 2012: learning closed sets

in matroids.
• F., Kötzing, San Mauro, 2018: learning equivalence

structures.
Our goal is: to combine the technology of CLT with notions
coming from computable structure theory to develop a general
framework for learning the isomorphism type of algebraic
structures. 54



Computable Structures

To learn the isomorphism type of a given structure, one should
be able to name such an isomorphism type. This is why we
focus on the learning of (copies of) computable or c.e.
structures.

Learning should be independent from the way in which data is
presented. So, a successful learning procedure should work for
all isomorphic copies of a given structure.
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Learning structures

Combining computable structures and algorithmic learning:
• Let K be a class of structures. Fix some uniform effective

enumeration {Ci}i2! of the computable structures from
(possibly) a superclass K0, up to isomorphism.

• A learner M is a total function which takes for its inputs
finite substructures of a given structure S from K .

• For a fixed equivalence relation ⇠, M learns S up to ⇠ if,
for all T ⇠= S, there exists n 2 ! such that T ⇠ Cn and
M(T i) #= n, for all but finitely many i .

• A family of structures A is learnable up to ⇠ if there is M
that learns all A 2 A.
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Infinitary formulas

We are able to fully characterize which families of structures
are learnable. To do so, we use the logic L!1!, which allows to
take conjunctions or disjunctions of infinite sets of formulas.
Suppose that K0 is a class of L-structures, and ⌫ is an effective
enumeration of the class K0.

Theorem (Bazhenov, F., San Mauro)

Let K = {Bi : i 2 !} be a family of structures such that K ✓ K0,

and the structures Bi are infinite and pairwise non-isomorphic.

Then the following conditions are equivalent:

1 The class K is learnable;

2 There is a sequence of ⌃inf

2 sentences { i : i 2 !} such

that for all i and j, we have Bj |=  i if and only if i = j .

Under some reasonable effectiveness restrictions (e.g., the sequence of
sentences above should be uniformly X -computable) the class K above is
learnable via an X -computable learner. 57



Applications

Corollary (BFS)
• There exist learnable classes of:

• lattices,

• abelian groups,

• linear orders (only finite classes)

• There are no learnable classes for

• Boolean algebras,

• Infinite classes of linear orders.
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Other learnability classes

We obtain different learnability classes by replacing the main
ingredients of the definition with natural alternatives:

1 Learning from text: in Txt-learning the learner receives
only positive information of the structure to be learnt.

2 ⇠= 7! E , where E is some nice equivalence relations
relation between elements of K, such as bi-embeddability
(⇡), computable isomorphism (⇠=0), computable
bi-embeddability (⇡0) – and so forth.

3 modifications in convergence behaviour: e.g., in
BC-learning (short for behaviourally correct) the learner is
allowed to change its mind infinitely many times as far as
almost all its conjectures lie in the same E-class (with E

defined as in 2.).
4 Yet another dimension to consider is the complexity of the

learner.
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Syntactic characterization for TxtEx-learning

Theorem (Bazhenov, F., Rosseger, A. Soskova, Vatev)
Let K = {Ai : i 2 !} be a class of computable infinite

L-structures (here we assume that Ai 6⇠= Aj for i 6= j ), such that.

The following are equivalent.

• For every Ai 2 K there is a ⌃p

2 sentence 'i such that for all

Ak 2 K , Ak |= 'i if and only if k = i .

• the class K is Txt-learnable.

Again, with extra effectiveness, the class K is learnable by an
X -computable learner.
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Computable and c.e. structures

We consider finite (relational) signatures L.
A is c.e., or ⌃0

1, or positive if A = ! and the interpretations of
L are c.e.

A

B

C

D

E

F

G

H

I
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⌃0
1 structures

There are several papers on ⌃0
1 structures, though the topic

was considered to be quite exotic, as it somewhat failed on
motivation:

• Cenzer, Harizanov, Remmel: ⌃0
1 and ⇧0

1 equivalence
structures

• CHR: ⌃0
1 and ⇧0

1 injection structures
There is a natural case when ⌃0

1 structures become particularly
useful: when we consider partial structures, i.e., structures with
partial basic functions.

Definition
A partial applicative structure (pas) is a set A together with a
partial map · from A⇥A to A. We usually write ab instead of
a · b, and think of this as ‘a applied to b’. If this is defined we
denote this by ab #. By convention, application associates to
the left, so we write abc instead of (ab)c.
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Partial combinatory algebras, or PCAs

Definition
A pas A is called combinatory complete if for any term
t(x1, . . . , xn, x), n � 0, with free variables among x1, . . . , xn, x ,
there exists b 2 A such that for all a1, . . . , an, a 2 A,

(i) ba1 · · · an #,
(ii) ba1 · · · ana ' t(a1, . . . , an, a).

A pas A is a partial combinatory algebra (pca) if it is
combinatory complete.

The standard example of a pca is Kleene’s first model K1, with
application on the natural numbers defined by

n · m = 'n(m).

This is the setting of classical computability theory.
Other PCAs are closely related to the enumeration degrees in
computability theory, lambda calculus, constructive
mathematics, etc. 65



Complexity of descriptions for PCAs

Given a pca A on ! in which the relation a · b #= c is c.e., we
can represent A by the c.e. set

W = {ha, b, ci | a · b #= c}.

The question then arises what the complexity is of the set of
indices of c.e. sets that encode pcas in this way.

Definition
The index set of c.e. pcas is defined as

I(pca) = {e | We is a pca}.

Using this definition of pcas, we obtain ⇧0
4 as an upper bound

for the complexity of the index set I(pca). However, we can do
better.
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Complexity of the index set for PCAs

Theorem (Feferman)
A pas A is a pca if and only if it has elements k and s with the

following properties for all a, b, c 2 A:

• k is total and kab = a,

• sab # and sabc ' ac(bc).

Theorem (F., Terwijn)
I(pca) is ⌃0

3-complete.

Upper bound: follows by counting quantifiers in the Feferman’s
characterization above.
Lower bound: for a ⌃0

3 set B, we construct a sequence of
structures (Ax)x2!, such that

• every Ax is a pas,
• if x 2 B, then Ax is some alternative coding of K1, and
• if x /2 B then A is not a pca. 67



Thank you!
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