Introduction to continuum theory and projective Fraïssé theory

Aleksandra Kwiatkowska

University of Münster and University of Wrocław

11.05.2023

• Let $L = \{R_i\}_{i \in I} \cup \{f_j\}_{j \in J}$ be a language.

伺 ト イヨ ト イヨト

- Let $L = \{R_i\}_{i \in I} \cup \{f_j\}_{j \in J}$ be a language.
- A topological *L*-structure is a compact zero-dimensional second-countable space *A* equipped with closed relations R^A_i, i ∈ I and continuous functions f^A_i, j ∈ J.

- Let $L = \{R_i\}_{i \in I} \cup \{f_j\}_{j \in J}$ be a language.
- A topological *L*-structure is a compact zero-dimensional second-countable space A equipped with closed relations R^A_i, i ∈ I and continuous functions f^A_i, j ∈ J.
- Epimorphisms are continuous surjections preserving the structure.

A family \mathcal{F} of finite topological *L*-structure is a projective Fraïssé class if:

- (F1) (joint projection property: JPP) for any A, B ∈ F there is C ∈ F and epimorphisms from C onto A and from C onto B;
- (F2) (amalgamation property: AP) for A, B₁, B₂ ∈ F and any epimorphisms φ₁: B₁ → A and φ₂: B₂ → A, there exist C, φ₃: C → B₁ and φ₄: C → B₂ such that φ₁ ∘ φ₃ = φ₂ ∘ φ₄.

A topological *L*-structure \mathbb{L} is a projective Fraïssé limit of \mathcal{F} if the following three conditions hold:

- (L1) (projective universality) for any $A \in \mathcal{F}$ there is an epimorphism from \mathbb{L} onto A;
- (L2) (projective ultrahomogeneity) for any A ∈ F and any epimorphisms φ₁: L → A and φ₂: L → A there exists an isomorphism h: L → L such that φ₂ = φ₁ ∘ h;
- ③ (L3) for any finite discrete topological space X and any continuous function $f: \mathbb{L} \to X$ there is an $A \in \mathcal{F}$, an epimorphism $\phi: \mathbb{L} \to A$, and a function $f_0: A \to X$ such that $f = f_0 \circ \phi$.

Theorem (Irwin-Solecki)

Let \mathcal{F} be a countable projective Fraïssé class of finite structures. Then:

• there exists a projective Fraïssé limit of \mathcal{F} ;

2 any two projective Fraïssé limits are isomorphic.

A simple example of a projective Fraïssé class

Let \mathcal{F} be the family of all finite sets.

Let \mathcal{F} be the family of all finite sets.

Then the projective Fraïssé limit is the Cantor set.

Let \mathcal{F} be the family of all finite sets $A = \{a_1, \ldots, a_n\}$, some *n*, with the binary relation \leq^A , where for each *i*, $a_i \leq^A a_i$ and $a_i \leq^A a_{i+1}$.

Let \mathcal{F} be the family of all finite sets $A = \{a_1, \ldots, a_n\}$, some n, with the binary relation \leq^A , where for each i, $a_i \leq^A a_i$ and $a_i \leq^A a_{i+1}$.

Then the projective Fraïssé limit is $(\mathbb{C}, \leq^{\mathbb{C}})$, where \mathbb{C} is the Cantor set. For $a \neq b \in \mathbb{C}$, we have $a \leq^{\mathbb{C}} b$ or $b \leq^{\mathbb{C}} a$ iff a and b are endpoints of an interval removed at some stage of the construction of \mathbb{C} , viewed as the middle-third Cantor set.

Let \mathcal{F} be the family of all finite sets $A = \{a_1, \ldots, a_n\}$, some n, with the binary relation \leq^A , where for each i, $a_i \leq^A a_i$ and $a_i \leq^A a_{i+1}$.

Then the projective Fraïssé limit is $(\mathbb{C}, \leq^{\mathbb{C}})$, where \mathbb{C} is the Cantor set. For $a \neq b \in \mathbb{C}$, we have $a \leq^{\mathbb{C}} b$ or $b \leq^{\mathbb{C}} a$ iff a and b are endpoints of an interval removed at some stage of the construction of \mathbb{C} , viewed as the middle-third Cantor set.

Identify $\leq^{\mathbb{C}}$ -related points. This is the *topological realization* of $(\mathbb{C}, \leq^{\mathbb{C}})$. It is homeomorphic to [0,1].

The pseudo-arc

Definition

A pseudo-arc is a chainable hereditarily indecomposable continuum.

The pseudo-arc

Definition

A pseudo-arc is a chainable hereditarily indecomposable continuum.

Definition

A continuum is **indecomposable** if it is not the union of two proper subcontinua.

Definition

It is hereditarily indecomposable if its every subcontinuum is indecomposable.

Definition

A continuum is chainable if any open cover can be refined by an open cover U_1, \ldots, U_n such that for all $i, j \leq n$, we have $U_i \cap U_j \neq \emptyset$ iff $|i - j| \leq 1$.

Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

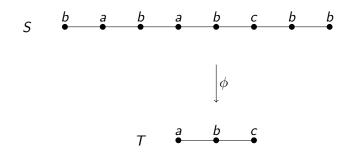
Let \mathcal{G} be the family of all finite linear reflexive graphs $A = (A, r^A)$

• • • • •

A continuous surjection $\phi: S \to T$ is an epimorphism iff

$$egin{array}{l} r^{ op}(a,b) \ \iff \exists c,d\in S\left(\phi(c)=a,\phi(d)=b, ext{ and } r^{S}(c,d)
ight). \end{array}$$

An example of an epimorphism



Aleksandra Kwiatkowska Projective Fraïssé theory

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Irwin-Solecki)

- The family *G* has the amalgamation property.
- There is a unique P = (P, r^P), where P is compact, separable, totally disconnected, r^P is closed, which is projectively universal, projectively ultrahomogeneous, and continuous maps onto finite sets factor through epimorphisms onto finite structures.
- Solution r^P is an equivalence relation such that each equivalence class has at most two elements.

Theorem (Irwin-Solecki)

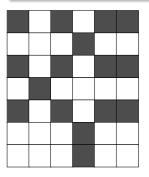
- The family G has the amalgamation property.
- There is a unique P = (P, r^P), where P is compact, separable, totally disconnected, r^P is closed, which is projectively universal, projectively ultrahomogeneous, and continuous maps onto finite sets factor through epimorphisms onto finite structures.
- Some of the relation r^P is an equivalence relation such that each equivalence class has at most two elements.

Theorem (Irwin-Solecki)

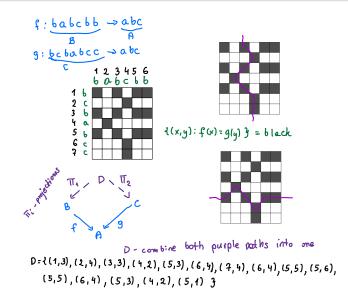
 $\mathbb{P}/r^{\mathbb{P}}$ is the pseudo-arc.

Theorem (Steinhaus chessboard theorem)

Consider a chessboard $m \times n$ with some squares black and some white. Assume that the king cannot go across the chessboard from the left edge to the right moving exclusively on black squares. Then the rook can go across the chessboard from upper edge to the lower one moving exclusively on white squares.



Amalgamation property 2



→ < ∃ →</p>

B> B

The projective universality and homogeneity of $\ensuremath{\mathbb{P}}$ yield the following theorem.

Theorem

(i) (Mioduszewski) Each chainable continuum is a continuous image of the pseudo-arc.

(ii) (Irwin-Solecki) Let X be a chainable continuum with a metric d on it. If f₁, f₂ are continuous surjections from the pseudo-arc onto X, then for any ε > 0 there exists a homeomorphism h of the pseudo-arc such that d(f₁(x), f₂ ∘ h(x)) < ε for all x.

Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

• Universal Knaster continuum K is a Knaster continuum which continuously and openly surjects onto all Knaster continua.

Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

- Universal Knaster continuum K is a Knaster continuum which continuously and openly surjects onto all Knaster continua.
- S. lyer (2022) constructed the universal Knaster continuum as the topological realization of a projective Fraïssé limit.
- She represented Homeo(K) as the semidirect product of an extremely amenable Polish group and the free abelian group on countably many generators, and concluded that the universal minimal flow of Homeo(K) is non-metrizable.
- Another construction of the universal Knaster continuum in the projective Fraïssé theoretic framework was presented by L. Wickman (2022).

Example

- (Bartošová-Kwiatkowska '15) Lelek fan $\mathcal{F} = \{$ rooted trees, all epimorphisms $\}$
- Q (Panagiotopoulos-Solecki '22) Menger universal curve $\mathcal{F} = \{ \text{finite connected graphs, monotone epimorphisms} \}$
- (Charatonik-Roe '22+) Ważewski dendrite W₃
 \$\mathcal{F} = {finite trees, monotone epimorphisms}\$
- Q (Codenotti-Kwiatkowska '22+) all generalized Ważewski dendrites W_P, P ⊆ {3,4,...,ω}
 F_P = {finite trees, weakly coherent monotone epimorphisms}
- (Bartoš-Kubiś '22+) P-adic pseudo-solenoids for any set of primes P

/⊒ ▶ ◀ ⊒ ▶ ◀

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

Definition

- A continuous function $f: L \to K$ is a homomorphism if $\langle a, b \rangle \in E(L)$ implies $\langle f(a), f(b) \rangle \in E(K)$.
- A homomorphism f is an epimorphism if it is moreover surjective on both vertices and edges.

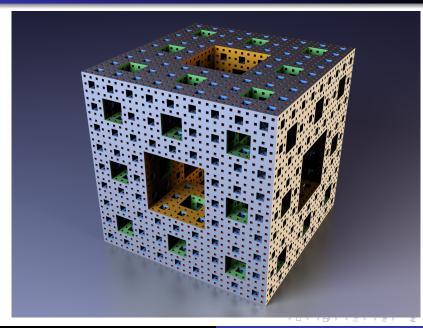
A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

Definition

- (continua) Let K, L be continua. A continuous map f: L → K is called monotone if for every subcontinuum M of K, f⁻¹(M) is connected.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called monotone if for every closed connected
 subset Q of H, f⁻¹(Q) is connected.

Universal Menger curve - construction



Aleksandra Kwiatkowska

Theorem (Panagiotopoulos-Solecki)

The class \mathcal{F} of all finite connected graphs with monotone epimorphisms is a Fraïssé class. The topological realization of the projective Fraïssé limit of \mathcal{F} is the universal Menger curve.

Let \mathbb{M} denote the projective Fraïssé limit of \mathcal{F} .

Theorem (Panagiotopoulos-Solecki)

The class \mathcal{F} of all finite connected graphs with monotone epimorphisms is a Fraïssé class. The topological realization of the projective Fraïssé limit of \mathcal{F} is the universal Menger curve.

Let \mathbb{M} denote the projective Fraïssé limit of \mathcal{F} .

Theorem (Panagiotopoulos-Solecki '22)

- Each Peano continuum is a continuous monotone image of the universal Menger curve.
- ② Let X be a Peano continuum. Let d be a metric on X. If f₁ and f₂ are continuous monotone surjections from the universal Menger curve onto X, then for any € > 0 there exists a homeomorphism h of the universal Menger curve such that for all x, d(f₁(x), f₂ ∘ h(x)) < €.</p>

▲ 伊 ▶ ▲ 王 ▶

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

→ < Ξ → <</p>

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

Theorem (Panagiotopoulos-Solecki '22)

If K and L are saturated and locally non-separating subgraphs of \mathbb{M} , then each isomorphism from K to L extends to an automorphism of \mathbb{M} .

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

Theorem (Panagiotopoulos-Solecki '22)

If K and L are saturated and locally non-separating subgraphs of \mathbb{M} , then each isomorphism from K to L extends to an automorphism of \mathbb{M} .

Corollary (Anderson '58)

Any bijection between finite subsets of the universal Menger curve extends to a homeomorphism.

/∄ ▶ ∢ ∃ ▶

- (continua) Let K, L be continua. A continuous map f: L → K is called confluent if for every subcontinuum M of K and every component C of f⁻¹(M) we have f(C) = M.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called confluent if for every closed connected
 subset Q of H and every component C of f⁻¹(Q) we have
 f(C) = Q.

Proposition (Charatonik-Roe '22+)

Given two finite graphs G and H, the following conditions are equivalent for an epimorphism $f: G \rightarrow H$:

- I is confluent;
- ② for every edge $P \in E(H)$ and every component C of $f^{-1}(P)$ there is an edge E in C such that f(E) = P.

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

Definition

The winding number of a wrapping map f is n if for every (equivalently: some) $c \in C$, $f^{-1}(c)$ has exactly n components.

Wrapping maps



æ

-≣->

() 《 문 》 《

Let P be a set of prime numbers and let \mathcal{D}_P be the class of cycles with confluent epimorphisms whose winding numbers are of the form $p_1^{n_1}p_2^{n_2} \dots p_k^{n_k}$, where $p_i \in P$ and $n_i \in \mathbb{N}$. Then \mathcal{D}_P is a projective Fraïssé class. The projective Fraïssé limit is the solenod, which is surjectively universal in the class of solenoids constructed using winding numbers from P.

Proposition (Charatonik-Roe '22+)

The class G of finite connected graphs with confluent epimorphisms is a projective Fraïssé class.

- Let G denote the projective Fraïssé limit. Then E(G) is an equivalence relation with only single and double equivalence classes.
- Let $|\mathbb{G}|$ denote the topological realization. This is a one-dimensional continuum.

- $|\mathbb{G}|$ has the following properties:
 - it is not homogeneous;
 - 2 it is pointwise self-homeomorphic;
 - *it is an indecomposable continuum;*
 - all arc components are dense;
 - **o** each point is the top of the Cantor fan;
 - the pseudo-arc, the universal pseudo-solenoid, and the universal solenoid, embed in it;
 - it is hereditarily unicoherent, in particular, the circle S¹ does not embed in it.

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that do not belong to a solenoid.

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that do not belong to a solenoid.

Corollary (Charatonik-K-Roe '22+)

The continuum $|\mathbb{G}|$ is not homogeneous.

Thank you!

Aleksandra Kwiatkowska Projective Fraïssé theory

æ

白とくヨとく