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Projective Fräıssé theory – setup

1 Let L = {Ri}i∈I ∪ {fj}j∈J be a language.

2 A topological L-structure is a compact zero-dimensional
second-countable space A equipped with closed relations
RA
i , i ∈ I and continuous functions f Aj , j ∈ J.

3 Epimorphisms are continuous surjections preserving the
structure.
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Projective Fräıssé class – definition

A family F of finite topological L-structure is a projective Fräıssé
class if:

1 (F1) (joint projection property: JPP) for any A,B ∈ F there
is C ∈ F and epimorphisms from C onto A and from C onto
B;

2 (F2) (amalgamation property: AP) for A,B1,B2 ∈ F and any
epimorphisms ϕ1 : B1 → A and ϕ2 : B2 → A, there exist C ,
ϕ3 : C → B1 and ϕ4 : C → B2 such that ϕ1 ◦ ϕ3 = ϕ2 ◦ ϕ4.
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Projective Fräıssé limit – definition

A topological L-structure L is a projective Fräıssé limit of F if the
following three conditions hold:

1 (L1) (projective universality) for any A ∈ F there is an
epimorphism from L onto A;

2 (L2) (projective ultrahomogeneity) for any A ∈ F and any
epimorphisms ϕ1 : L→ A and ϕ2 : L→ A there exists an
isomorphism h : L→ L such that ϕ2 = ϕ1 ◦ h;

3 (L3) for any finite discrete topological space X and any
continuous function f : L→ X there is an A ∈ F , an
epimorphism ϕ : L→ A, and a function f0 : A→ X such that
f = f0 ◦ ϕ.
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Projective Fräıssé limit – existence and uniqueness

Theorem (Irwin-Solecki)

Let F be a countable projective Fräıssé class of finite structures.
Then:

1 there exists a projective Fräıssé limit of F ;
2 any two projective Fräıssé limits are isomorphic.
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A simple example of a projective Fräıssé class

Let F be the family of all finite sets.

Then the projective Fräıssé limit is the Cantor set.
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One more simple example

Let F be the family of all finite sets A = {a1, . . . , an}, some n, with
the binary relation ≤A, where for each i , ai ≤A ai and ai ≤A ai+1.

Then the projective Fräıssé limit is (C,≤C), where C is the Cantor
set. For a ̸= b ∈ C, we have a ≤C b or b ≤C a iff a and b are
endpoints of an interval removed at some stage of the construction
of C, viewed as the middle-third Cantor set.

Identify ≤C-related points. This is the topological realization of
(C,≤C). It is homeomorphic to [0,1].
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Then the projective Fräıssé limit is (C,≤C), where C is the Cantor
set. For a ̸= b ∈ C, we have a ≤C b or b ≤C a iff a and b are
endpoints of an interval removed at some stage of the construction
of C, viewed as the middle-third Cantor set.

Identify ≤C-related points. This is the topological realization of
(C,≤C). It is homeomorphic to [0,1].

Aleksandra Kwiatkowska Projective Fräıssé theory



The pseudo-arc

Definition

A pseudo-arc is a chainable hereditarily indecomposable continuum.

Definition

A continuum is indecomposable if it is not the union of two proper
subcontinua.

Definition

It is hereditarily indecomposable if its every subcontinuum is
indecomposable.

Definition

A continuum is chainable if any open cover can be refined by an
open cover U1, . . . ,Un such that for all i , j ≤ n, we have
Ui ∩ Uj ̸= ∅ iff |i − j | ≤ 1.
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Construction of the pseudo-arc, part 1

Let G be the family of all finite linear reflexive graphs A = (A, rA)

A continuous surjection ϕ : S → T is an epimorphism iff

rT (a, b)

⇐⇒ ∃c , d ∈ S
(
ϕ(c) = a, ϕ(d) = b, and rS(c , d)

)
.
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Construction of the pseudo-arc, part 1

Let G be the family of all finite linear reflexive graphs A = (A, rA)

A continuous surjection ϕ : S → T is an epimorphism iff

rT (a, b)

⇐⇒ ∃c , d ∈ S
(
ϕ(c) = a, ϕ(d) = b, and rS(c , d)

)
.

Aleksandra Kwiatkowska Projective Fräıssé theory
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An example of an epimorphism

S
b a b a b c b b

T
a b c

ϕ
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Construction of the pseudo-arc, part 2

Theorem (Irwin-Solecki)

1 The family G has the amalgamation property.

2 There is a unique P = (P, rP), where P is compact, separable,
totally disconnected, rP is closed, which is projectively
universal, projectively ultrahomogeneous, and continuous
maps onto finite sets factor through epimorphisms onto finite
structures.

3 The relation rP is an equivalence relation such that each
equivalence class has at most two elements.

Theorem (Irwin-Solecki)

P/rP is the pseudo-arc.
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Amalgamation property

Theorem (Steinhaus chessboard theorem)

Consider a chessboard m × n with some squares black and some
white. Assume that the king cannot go across the chessboard from
the left edge to the right moving exclusively on black squares.
Then the rook can go across the chessboard from upper edge to
the lower one moving exclusively on white squares.
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Amalgamation property 2

1
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Projective universality and homogeneity

The projective universality and homogeneity of P yield the
following theorem.

Theorem

(i) (Mioduszewski) Each chainable continuum is a continuous
image of the pseudo-arc.

(ii) (Irwin-Solecki) Let X be a chainable continuum with a metric
d on it. If f1, f2 are continuous surjections from the pseudo-arc
onto X , then for any ϵ > 0 there exists a homeomorphism h
of the pseudo-arc such that d(f1(x), f2 ◦ h(x)) < ϵ for all x.
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Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse
limit lim←−(In, fn) of a sequence of unit intervals In = [0, 1] with
continuous, open, non-homeomorphic surjections fn that map 0
to 0.

Universal Knaster continuum K is a Knaster continuum which
continuously and openly surjects onto all Knaster continua.

S. Iyer (2022) constructed the universal Knaster continuum as
the topological realization of a projective Fräıssé limit.

She represented Homeo(K ) as the semidirect product of an
extremely amenable Polish group and the free abelian group
on countably many generators, and concluded that the
universal minimal flow of Homeo(K ) is non-metrizable.

Another construction of the universal Knaster continuum in
the projective Fräıssé theoretic framework was presented by L.
Wickman (2022).
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She represented Homeo(K ) as the semidirect product of an
extremely amenable Polish group and the free abelian group
on countably many generators, and concluded that the
universal minimal flow of Homeo(K ) is non-metrizable.

Another construction of the universal Knaster continuum in
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More examples

Example

1 (Bartošová-Kwiatkowska ’15) Lelek fan
F = {rooted trees, all epimorphisms}

2 (Panagiotopoulos-Solecki ’22) Menger universal curve
F = {finite connected graphs, monotone epimorphisms}

3 (Charatonik-Roe ’22+) Ważewski dendrite W3

F = {finite trees, monotone epimorphisms}
4 (Codenotti-Kwiatkowska ’22+) all generalized Ważewski

dendrites WP , P ⊆ {3, 4, . . . , ω}
FP = {finite trees, weakly coherent monotone epimorphisms}

5 (Bartoš-Kubís ’22+) P-adic pseudo-solenoids for any set of
primes P
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Topological graphs

Definition

A topological graph K is a graph (V (K ),E (K )), whose domain
V (K ) is a 0-dimensional, compact, second-countable (thus has a
metric) space and E (K ) is a closed, reflexive and symmetric subset
of V (K )2.

Definition

1 A continuous function f : L→ K is a homomorphism if
⟨a, b⟩ ∈ E (L) implies ⟨f (a), f (b)⟩ ∈ E (K ).

2 A homomorphism f is an epimorphism if it is moreover
surjective on both vertices and edges.
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Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are
two nonempty closed subsets P and Q of S such that P ∪ Q = S
and if a ∈ P and b ∈ Q, then ⟨a, b⟩ /∈ E (G ). A subset S of G is
connected if it is not disconnected.

Definition

(continua) Let K , L be continua. A continuous map
f : L→ K is called monotone if for every subcontinuum M of
K , f −1(M) is connected.

(graphs) Let G , H be topological graphs. An epimorphism
f : G → H is called monotone if for every closed connected
subset Q of H, f −1(Q) is connected.
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Universal Menger curve - construction
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Universal Menger curve - Fräıssé construction

Theorem (Panagiotopoulos-Solecki)

The class F of all finite connected graphs with monotone
epimorphisms is a Fräıssé class. The topological realization of the
projective Fräıssé limit of F is the universal Menger curve.

Let M denote the projective Fräıssé limit of F .

Theorem (Panagiotopoulos-Solecki ’22)

1 Each Peano continuum is a continuous monotone image of
the universal Menger curve.

2 Let X be a Peano continuum. Let d be a metric on X . If f1
and f2 are continuous monotone surjections from the universal
Menger curve onto X , then for any ϵ > 0 there exists a
homeomorphism h of the universal Menger curve such that for
all x, d(f1(x), f2 ◦ h(x)) < ϵ.
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epimorphisms is a Fräıssé class. The topological realization of the
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Homogeneity of the universal Menger curve

Definition

A topological subgraph K of M is locally non-separating if for each
clopen connected W , the set W \ K is connected.

Theorem (Panagiotopoulos-Solecki ’22)

If K and L are saturated and locally non-separating subgraphs of
M, then each isomorphism from K to L extends to an
automorphism of M.

Corollary (Anderson ’58)

Any bijection between finite subsets of the universal Menger curve
extends to a homeomorphism.
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Confluent maps

Definition

(continua) Let K , L be continua. A continuous map
f : L→ K is called confluent if for every subcontinuum M of
K and every component C of f −1(M) we have f (C ) = M.

(graphs) Let G , H be topological graphs. An epimorphism
f : G → H is called confluent if for every closed connected
subset Q of H and every component C of f −1(Q) we have
f (C ) = Q.
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More on confluent maps

Proposition (Charatonik-Roe ’22+)

Given two finite graphs G and H, the following conditions are
equivalent for an epimorphism f : G → H:

1 f is confluent;

2 for every edge P ∈ E (H) and every component C of f −1(P)
there is an edge E in C such that f (E ) = P.
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Fräıssé classes of cycles

Definition

For A ∈ G we will say that C ⊆ A is a cycle in A if |V (C )| > 2 and
we can enumerate the vertices of C as (c0, c1, . . . , cn = c0) in a
way that ci ̸= cj whenever 0 ≤ i < j < n and ⟨ci , cj⟩ ∈ E (A) if and
only if |j − i | ≤ 1.

Definition

Confluent epimorphism between cycles we call wrapping maps.

Definition

The winding number of a wrapping map f is n if for every
(equivalently: some) c ∈ C , f −1(c) has exactly n components.
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Wrapping maps
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Constructing solenoids - warm up

Theorem (Charatonik-K-Roe ’22+)

Let P be a set of prime numbers and let DP be the class of cycles
with confluent epimorphisms whose winding numbers are of the
form pn1

1 pn2
2 . . . pnkk , where pi ∈ P and ni ∈ N. Then DP is a

projective Fräıssé class.
The projective Fräıssé limit is the solenod, which is surjectively
universal in the class of solenoids constructed using winding
numbers from P.
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The projective Fräıssé class G - main example

Proposition (Charatonik-Roe ’22+)

The class G of finite connected graphs with confluent
epimorphisms is a projective Fräıssé class.

Let G denote the projective Fräıssé limit. Then E (G) is an
equivalence relation with only single and double equivalence
classes.

Let |G| denote the topological realization. This is a
one-dimensional continuum.
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Main Theorem - part 1

Theorem (Charatonik-K-Roe ’22+)

|G| has the following properties:

1 it is not homogeneous;

2 it is pointwise self-homeomorphic;

3 it is an indecomposable continuum;

4 all arc components are dense;

5 each point is the top of the Cantor fan;

6 the pseudo-arc, the universal pseudo-solenoid, and the
universal solenoid, embed in it;

7 it is hereditarily unicoherent, in particular, the circle S1 does
not embed in it.
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Main theorem - part 2:
Embedding solenoids and non-homogeneity

Theorem (Charatonik-K-Roe ’22+)

There is a dense set of points in |G| that belong to a solenoid.
Moreover, the only solenoid that embeds into |G| is the universal
solenoid.

Theorem (Charatonik-K-Roe ’22+)

There is a dense set of points in |G| that do not belong to a
solenoid.

Corollary (Charatonik-K-Roe ’22+)

The continuum |G| is not homogeneous.

Aleksandra Kwiatkowska Projective Fräıssé theory
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Thank you!
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